法则IⅢI若z是f(z)的m阶极点1d'[z-zo)" (2)] (5)ResLf(z),zo] =(m-1)! z-zo dzm-i证明:由条件f(z) =c-m(z-zo)-m +...+c_2(z -zo)-2 +c,(z- zo)+Co +c,(z -zo)+.., (c-m + 0)以(z一zo)"乘上式两边得(z-zo)" f(z) =c_m +c_m+1(z-zo)+...+c.(z- zo)"-1+co(z-zo)" +
证明:由条件 ( ) , ( 0) ( ) ( ) ( ) ( ) 0 1 0 1 1 0 2 0 2 0 + + - + = - + + - + - - - - - - - - m m m c c z z c f z c z z c z z c z z 以(z - z0 ) m 乘上式两边,得 + - + - = + - + + - - - - + - m m m m m c z z z z f z c c z z c z z ( ) ( ) ( ) ( ) ( ) 0 0 1 0 1 0 1 0 法则III 若z0 是f (z)的m阶极点 lim ( ) ( ) (5) ( 1)! 1 Re [ ( ), ] 1 0 1 0 0 z z f z dz d m s f z z m m m z z - - = - - →
两边求m-1阶导数得dm-1dam- (- 0)" (2) =(m-1)lc- + ml(- - 0)..dn(z-zo)" f(z)]=(m-1)c-1,移项得(5)式.limm-dz.Z→Z0)=在z=0处的留数例5.19求函数f(z):-解:因z=O是f(2)的二阶极点,则由公式(5)有d2-[(z-0)" f(2)] _ lim(-e")--1Res.f(2),0)limdz2-1(2 -1)!z->0
解:因 是 的二阶极点,则由公式 (5)有 z = 0 f (z) ( ) lim( ) 1 [( 0) ( )] lim (2 1)! 1 Res[ ,0] 0 2 1 2 1 2 0 = - = - - - = - - → - → z z z e dz d z f z f z 例5.19求函数 ( ) z 2 在 处的留数 e f z - z = z = 0 lim ( ) ( ) ( 1)! , (5) . 1 0 1 1 0 - - 移项得 式 - → z - z f z = m - c dz d m m m z z - = - + - + - - - - {( ) ( )} ( 1)! !( ) 1 1 0 1 0 1 z z f z m c m z z dz d m m m m 两边求 阶导数得
et例函数在极点处的留数f(2) :1 + zelz有两个一阶极点z=±i,解:因为函数,f(z)+且P(z)1i2Q'(z)2zeti有Res[f(2),i] z=i2z.2eetiRes.f(2),-il :eZ=2z2
例 函数 1 z 2 在极点处的留数 e f(z) iz + = 解:因为函数 有两个一阶极点 , 且 , 1 ( ) 2 z e f z iz + = z = i , 2 1 '( ) ( ) iz e Q z z P z = ( ) e i z e f z i z i i z 2 2 Res = = - = 有 [ , ] ( ) . 2 2 Res[ , ] e i z e f z i z i i z - = = =-
5z-2计算例5.20dzJ=-2 2(2 -1)5z - 2解:f(z)=在z=2的内部有一个一阶z(z-1)极点z=0和一个二阶极点z=15z-2-2Res[ f(z),0] = lim zf (z) = lim(z -1)Z070d15z -21Res[ f (z),1] = lim(zz(z-1)z-1 (2 -1)! dz25z22imm27-→>1z-1Z7.f(z)dz = 2i Res[f(z),0]+ 2i Res[f(z),1]= 0
0 1 2 ( 1) 5 2 ( ) 2 = = = - - = z z z z z z f z 极 点 和一个二阶极点 解 : 在 的内部有一个一阶 2 ( 1) 5 2 R e [ ( ),0] lim ( ) lim 2 0 0 = - - - = = → → z z s f z zf z z z } ( 1) 5 2 {( 1) (2 1)! 1 R e [ ( ),1] lim 2 2 1 - - - - = → z z z z dz d s f z z 2 2 )' lim 5 2 lim( 2 1 1 = = - = → z → z z z z ( ) 2 Re [ ( ),0] 2 Re [ ( ),1] 0 2 = + = = f z dz i s f z i s f z z ( ) = - - 2 2 1 5 2 5.20 z dz z z z 例 计算
Z例计算dzJ-=2 24-1解:f(z)有4个一阶极点:±1,土都在圆周C内,1P(z)N由规则II4224z3Q'(z2)Z故dz = 2πi{Res[,f(z),-1]+ Res[f(z),1]Jcz4-1+ Reslf(z),i]+ Res[f(z),-il)11:02元一4X44
解:f (z)有4个一阶极点:1,i都在圆周C内, 3 2 4 1 '( ) 4 ( ) z z z Q z P z 由规则 = = 0 4 1 4 1 4 1 4 1 2 R e [ ( ), ] R e [ ( ), ]} 2 {Re [ ( ), 1] R e [ ( ),1] 1 4 = = + - - + + - = - + - i s f z i s f z i dz i s f z s f z z z C 故 =2 - 4 z 1 dz z z 例 计算