: .: [24 米 M 0 元n」 [得证] 11
1 2 0 H n U AU λ λ λ ∗ = [得证] 11
什么样的矩阵能够通过酉相似变换成为对角阵呢? 2.定理:n阶方阵A,酉相似于对角阵的充要条件是:A为正规阵(实 或复)。 [证明]由Schur引理:存在酉矩阵U使得 A=UAU= 1入2 l≤i≤j≤n 10 A 入,入2,…,入n是A的特征值。 12
什么样的矩阵能够通过酉相似变换成为对角阵呢? 2. 定理:n阶方阵 A,酉相似于对角阵的充要条件是:A为正规阵(实 或复)。 [证明] 由 Schur 引理:存在酉矩阵U 使得 1 2 0 ij H n t U AU λ λ λ Λ= = 1≤≤ ≤ i jn 1 2 ,,, λλ λ n是 A的特征值。 12