注意:(1)直线的曲率处处为零;(2)圆上各点处的曲率等于半径的倒数,且半径越小曲率越大2、曲率的计算公式设y=f(x)二阶可导,:tanα=yJ"有 α =arctany',dα =dx,1+ J"2小"ds = 1+ y'dx. :. K =(1 + y"2)2
2、曲率的计算公式 注意: (1) 直线的曲率处处为零; (2) 圆上各点处的曲率等于半径的倒数,且 半径越小曲率越大. 设y = f (x)二阶可导, tan = y , , 1 2 dx y y d + = 3 2 2 . (1 ) y K y = + 有 = arctan y , 1 . 2 ds = + y dx
x = p(t),设二阶可导,y=y(t),y'(t)d'ydyp'(t)y"(t)-@"(t)y'(t)dr?dxp'(t)p"3(t)@'(t)y"(t) -"(t)y'(t): K=3[g"(t)+y'(t)]
, ( ), ( ), 设 二阶可导 = = y t x t 3 2 2 2 ( ) ( ) ( ) ( ) . [ ( ) ( )] t t t t K t t − = + , ( ) ( ) t t dx dy = . ( ) ( ) ( ) ( ) ( ) 2 3 2 t t t t t dx d y − =
例1 计算等双曲线xy =1在点(1,1)处的曲率2解:由y=得:=-,tsx因此y'|x=I = -1, y"|x=1 =2双曲线xy=1在点(x,y)处的曲率为/22yK=(1 +(-1)")3/2 = 2 = (1 + y"2)3/22
例1 1 (1,1) . 计算等双曲线xy = 在点 处的曲率 2 3 2 2 3 2 | | 2 1 2 (1 ) (1 ( 1) ) 2 2 y K y = = = = + + − 2 3 1 1 2 y y y x x x 解:由 = = − = 得: , 1 1 1, 2 x x 因此 y y = = = − = 双曲线xy x y = 1 ( , ) 在点 处的曲率为