A FIRST COURSE IN PROBABILITY Eighth Edition Sheldon Ross University of Southern California PEARSON Upper Saddle River,New Jersey 07458
A FIRST COURSE IN PROBABILITY Eighth Edition Sheldon Ross University of Southern California Upper Saddle River, New Jersey 07458
Contents Preface 1 Combinatorial Analysis 12 12 13 14 Combinations 6 efficients 591215 Problems ercise 6180 2 iomsofProbabilty tion 2. Sample Space and Events ome Simple Pr 93 2.6 Probability as a Continuous Set Function 44 2.7 Probability as a Measure of Belief. 8190 Theoretical exercises 4 Self-Test Problems and Exercises 56 3 Conditional Probability and Independence Probabilities 33 Baves's Formula 65 3.4 3.5 。, 990 2 4 Random Variables 42 dom Variables 123 43 Expected Value Epcation ofa Function of Random Variable 125 The 34 4.6.1 Properties of Binomial Random Variables. 1 4.6.2 Computing the Binomial Distribution Function. 142
Contents Preface xi 1 Combinatorial Analysis 1 1.1 Introduction . . . . 1 1.2 The Basic Principle of Counting . . . . 1 1.3 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Combinations . . . 5 1.5 Multinomial Coefficients . . . . 9 1.6 The Number of Integer Solutions of Equations . . . . . . . . . . . . . 12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 20 2 Axioms of Probability 22 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Sample Space and Events . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Axioms of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Some Simple Propositions . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Sample Spaces Having Equally Likely Outcomes . . . . . . . . . . . . 33 2.6 Probability as a Continuous Set Function . . . . . . . . . . . . . . . . . 44 2.7 Probability as a Measure of Belief . . . . . . . . . . . . . . . . . . . . . 48 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 56 3 Conditional Probability and Independence 58 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Bayes’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 P(·|F) Is a Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 114 4 Random Variables 117 4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 123 4.3 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.4 Expectation of a Function of a Random Variable . . . . . . . . . . . . 128 4.5 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.6 The Bernoulli and Binomial Random Variables . . . . . . . . . . . . . 134 4.6.1 Properties of Binomial Random Variables . . . . . . . . . . . . 139 4.6.2 Computing the Binomial Distribution Function . . . . . . . . . 142 vii
viii Contents 4.7 The Poisson Random Variable 143 471 ing the Poisson Distribution Function 154 4.8 Other Discrete Probability Distributions. 48 The Geometric Random varable Variable 483 cometric Random Variable 555 48.4 163 170 Problems 1 ercise 13 5 Continuous Random Variables 186 2 190 5.3 The Uniform Random Variable 194 5.4 al Rormal 288 Appro 5.Rate Functions 212 5.6 Other Continuous Distributions 。, 215 。 5.63 The cauchy distribution 217 5.6.4 The Beta Distribution 5.7 The Distribution of a Function of a Random Variable Problems 224 xercises 。 227 229 6 Jointly Distributed Random Variables 232 61 6 ndent Random y 252 6.3.1 Identically Distributed Uniform Random Variables 252 633 Gamma 34 Poormal R Random Variables 25 ial D m Variables 25d 6.3.5 Geometric Random Variables 260 Conditional Distributions:Discrete Case istributions:Continuous Case. 6.7 Joint Probability Distribution of Functions of Random Variables 274 6.8 Exchangeable Random Variables. pummary. Theoretical Exercises Self-Test Problems and Exercises
viii Contents 4.7 The Poisson Random Variable . . . . . . . . . . . . . . . . . . . . . . . 143 4.7.1 Computing the Poisson Distribution Function . . . . . . . . . . 154 4.8 Other Discrete Probability Distributions . . . . . . . . . . . . . . . . . 155 4.8.1 The Geometric Random Variable . . . . . . . . . . . . . . . . . 155 4.8.2 The Negative Binomial Random Variable . . . . . . . . . . . . 157 4.8.3 The Hypergeometric Random Variable . . . . . . . . . . . . . 160 4.8.4 The Zeta (or Zipf) Distribution . . . . . . . . . . . . . . . . . . 163 4.9 Expected Value of Sums of Random Variables . . . . . . . . . . . . . 164 4.10 Properties of the Cumulative Distribution Function . . . . . . . . . . . 168 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 183 5 Continuous Random Variables 186 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.2 Expectation and Variance of Continuous Random Variables . . . . . 190 5.3 The Uniform Random Variable . . . . . . . . . . . . . . . . . . . . . . 194 5.4 Normal Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.4.1 The Normal Approximation to the Binomial Distribution . . . 204 5.5 Exponential Random Variables . . . . . . . . . . . . . . . . . . . . . . 208 5.5.1 Hazard Rate Functions . . . . . . . . . . . . . . . . . . . . . . . 212 5.6 Other Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . 215 5.6.1 The Gamma Distribution . . . . . . . . . . . . . . . . . . . . . 215 5.6.2 The Weibull Distribution . . . . . . . . . . . . . . . . . . . . . 216 5.6.3 The Cauchy Distribution . . . . . . . . . . . . . . . . . . . . . . 217 5.6.4 The Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . 218 5.7 The Distribution of a Function of a Random Variable . . . . . . . . . 219 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 229 6 Jointly Distributed Random Variables 232 6.1 Joint Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . 232 6.2 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . 240 6.3 Sums of Independent Random Variables . . . . . . . . . . . . . . . . . 252 6.3.1 Identically Distributed Uniform Random Variables . . . . . . 252 6.3.2 Gamma Random Variables . . . . . . . . . . . . . . . . . . . . 254 6.3.3 Normal Random Variables . . . . . . . . . . . . . . . . . . . . 256 6.3.4 Poisson and Binomial Random Variables . . . . . . . . . . . . 259 6.3.5 Geometric Random Variables . . . . . . . . . . . . . . . . . . . 260 6.4 Conditional Distributions: Discrete Case . . . . . . . . . . . . . . . . . 263 6.5 Conditional Distributions: Continuous Case . . . . . . . . . . . . . . . 266 6.6 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 6.7 Joint Probability Distribution of Functions of Random Variables . . . 274 6.8 Exchangeable Random Variables . . . . . . . . . . . . . . . . . . . . . 282 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 293
Contents ix 7 Properties of Expectation 297 7.1 Introduction 297 7.2 ahePobablstiewetogectation 311 7.2.2 The Maximum-Minimums Identity 313 Moments of the Number of Events that Occur.,·,·,315 7.5 7.5.1 Definitions 7.5.2 Computing Expectations by Conditioning Comby oditionn 34 ati Moment Generating Functions. 354 7.7.1 Joint Moment Generating Functions 36 7.8 Additional Properties of Norma Random Variables The Joint Distribution of the sampis Mean 36 782 and sample variance 36 7.9 General Definition of Expectation. 369 380 Self-Test Problems and Exercises 8.2 Chebyshev's Inequality and the Weak Law of Large Numbers 388 83 301 Other Ineg arge 403 8.6 Bounding the Error Probability When Approximating a Sum of Problems 412 ···414 415 9 Additional Topics in Probability 417 9.1 The Poisson Process. 417 Markov Chains 94 428 Summary Problems and Theoretical Exercises. 435 ell-lest Problems and Exercises.43o References··········
Contents ix 7 Properties of Expectation 297 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 7.2 Expectation of Sums of Random Variables . . . . . . . . . . . . . . . . 298 7.2.1 Obtaining Bounds from Expectations via the Probabilistic Method . . . . . . . . . . . . . . . . . . . . 311 7.2.2 The Maximum–Minimums Identity . . . . . . . . . . . . . . . . 313 7.3 Moments of the Number of Events that Occur . . . . . . . . . . . . . . 315 7.4 Covariance, Variance of Sums, and Correlations . . . . . . . . . . . . . 322 7.5 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . 331 7.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 7.5.2 Computing Expectations by Conditioning . . . . . . . . . . . . 333 7.5.3 Computing Probabilities by Conditioning . . . . . . . . . . . . 344 7.5.4 Conditional Variance . . . . . . . . . . . . . . . . . . . . . . . . 347 7.6 Conditional Expectation and Prediction . . . . . . . . . . . . . . . . . 349 7.7 Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 354 7.7.1 Joint Moment Generating Functions . . . . . . . . . . . . . . . 363 7.8 Additional Properties of Normal Random Variables . . . . . . . . . . 365 7.8.1 The Multivariate Normal Distribution . . . . . . . . . . . . . . 365 7.8.2 The Joint Distribution of the Sample Mean and Sample Variance . . . . . . . . . . . . . . . . . . . . . . . . 367 7.9 General Definition of Expectation . . . . . . . . . . . . . . . . . . . . . 369 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 384 8 Limit Theorems 388 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 8.2 Chebyshev’s Inequality and the Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 8.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . 391 8.4 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . 400 8.5 Other Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 8.6 Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 Theoretical Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 415 9 Additional Topics in Probability 417 9.1 The Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 9.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 9.3 Surprise, Uncertainty, and Entropy . . . . . . . . . . . . . . . . . . . . 425 9.4 Coding Theory and Entropy . . . . . . . . . . . . . . . . . . . . . . . . 428 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 Problems and Theoretical Exercises . . . . . . . . . . . . . . . . . . . . 435 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 436 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
x Contents 10 Simulation 438 10.2.2 The Rejection Method 442 10./mulating from Discrete Distrbutions. 10.4nG Antithe 10 Variance Reduction by Conditioning 444505 l0.4.3 Control Variates.。. 3 453 Self-Test Problems and Exercises. 4 Answers to Selected Problems 457 Solutions to Self-Test Problems and Exercises 461 Index 521
x Contents 10 Simulation 438 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 10.2 General Techniques for Simulating Continuous Random Variables . . 440 10.2.1 The Inverse Transformation Method . . . . . . . . . . . . . . . 441 10.2.2 The Rejection Method . . . . . . . . . . . . . . . . . . . . . . . 442 10.3 Simulating from Discrete Distributions . . . . . . . . . . . . . . . . . . 447 10.4 Variance Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . 449 10.4.1 Use of Antithetic Variables . . . . . . . . . . . . . . . . . . . . 450 10.4.2 Variance Reduction by Conditioning . . . . . . . . . . . . . . . 451 10.4.3 Control Variates . . . . . . . . . . . . . . . . . . . . . . . . . . 452 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Self-Test Problems and Exercises . . . . . . . . . . . . . . . . . . . . . 455 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 Answers to Selected Problems 457 Solutions to Self-Test Problems and Exercises 461 Index 521