⑤少东理大军 第二节逆矩阵 一、概念的引入 二、逆矩阵的概念和性质 三、逆矩阵的求法 上页 下页 返回
第二节 逆 矩 阵 • 一、概念的引入 • 二、逆矩阵的概念和性质 • 三、逆矩阵的求法
©少东罪工大军 概念的引入 在数的运算中,当数≠0时,有 a0=a1a=1, 其中a'-1为a的倒数,(或称a的逆); 在矩阵的运算中,单位阵相当于数的乘法运算中 的1,那么,对于矩阵A,如果存在一个矩阵4, 使得 AA=AA-E, 则矩阵A称为A的可逆矩阵或逆阵
1, 1 1 = = − − aa a a , 1 1 AA = A A = E − − 则矩阵 称为 A 的可逆矩阵或逆阵. −1 A 一、概念的引入 在数的运算中,当数 a 0 时,有 a a 1 1 = 其中 − 为 a 的倒数,(或称 a 的逆); 在矩阵的运算中,单位阵 E 相当于数的乘法运算中 的1, 那么,对于矩阵 A , −1 如果存在一个矩阵 A , 使得
⑤少东承上大军 二、逆矩阵的概念和性质 定义 对于n阶矩阵A,如果有一个n阶矩阵B ,使得 AB=BA=E, 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵 A的逆矩阵记作A1, 剑设4-0》(好1 AB=BA=E,B是A的一个逆矩阵 回
二、逆矩阵的概念和性质 定义 对于 阶矩阵 ,如果有一个 阶矩阵 则说矩阵 是可逆的,并把矩阵 称为 的逆矩阵. n A B AB = BA = E, B A n A ,使得 . −1 A的逆矩阵记作A 例 设 , 1 2 1 2 1 2 1 2 , 1 1 1 1 − = − A = B AB = BA = E, B是A的一个逆矩阵
@山本开子大¥ 说明若A是可逆矩阵,则A的逆矩阵是唯一的 若设B和C是A的可逆矩阵,则有 AB=BA=E,AC=CA=E, 可得B=EB=(CA)B=C(AB)=CE=C. 所以A的逆矩阵是唯一的,即 B=C=A
说明 若 A 是可逆矩阵,则 A 的逆矩阵是唯一的. 若设 B 和 C 是 A 的可逆矩阵,则有 AB = BA = E, AC = CA = E, 可得 B = EB = (CA)B = C(AB) = CE = C. 所以 A 的逆矩阵是唯一的,即 . −1 B = C = A
三、逆矩阵的求法 ⑤少东承工大军 1、利用待定系数法 例 求A的逆阵, 解 是A的逆矩阵 则 8-(-09) -24-6 返回
例 设 , 1 0 2 1 − A = 求A的逆阵. 解 设 是 的逆矩阵, = c d a b B A 则 − = c d a b AB 1 0 2 1 = 0 1 1 0 = − − + + 0 1 2 2 1 0 a b a c b d 1、利用待定系数法 三、逆矩阵的求法