三、求极限举例 例1Iim x2-4 x→22x2-3x-2 解 =lim (x+2)(x-2) x少22x2-3x-2x2(2x+1)(x-2) =lim (x+2) x→2(2x+1)5 当x→2时,(x2-4)与(2x2-3x-2)是 同阶无穷小(x2-4)~(2x2-3x-2) 2021/2/20 5
2021/2/20 11 [解] 5 4 (2 1) ( 2) lim (2 1)( 2) ( 2)( 2) lim 2 3 2 4 lim 2 2 2 2 2 = + + = + − + − = − − − → → → x x x x x x x x x x x x (2 3 2) 5 4 ;( 4) ~ 2 ,( 4) (2 3 2) 2 2 2 2 − − − → − − − x x x x x x x 同阶无穷小 当 时 与 是 ? 2 3 2 4 lim 2 2 2 = − − − → x x x x [例1] 三、求极限举例
1-cos x 「例2lm = x→>0 2 解]li x→>0 .t2=li sinx 1-cos x x→>0y 2 x→>0(2)24n(sin3)2 2 lim 2(sin2)1 2x0(2)2 Sn sin2 m lin 2x->0 →>0 2 2021/2/20 12
2021/2/20 12 ? 1 cos lim 2 0 = − → x x x 2 2 2 2 0 2 2 2 2 0 ( ) (sin ) lim 21 ( ) 4 2(sin ) lim x x x x x x → → = = 2 2 2 0 2 0 2sin lim 1 cos lim x x x x x → x → = − 2 sin 1 lim sin lim 21 2 2 0 2 2 0 = = → → x x x x x x [例2] [解]
1-cosx 1 1-cos x x→0 2 x-0 2=1 2 l-cosx=O(x2)(同阶) 2(等价) 2 1-COSx=x 1-cosx=o(x)(高阶) 1-coSx是的2阶无穷小量 2021/2/20 13
2021/2/20 13 1 cos ( ) ( ) − x = O x 2 同阶 1− cos x = (x) (高阶) ( ) 2 1 1 cos ~ − x x 2 等价 1− cos x 是x 的2 阶无穷小量 = − → 2 1 cos 1 lim 2 0 x x x 1 1 cos lim 2 2 1 0 = − → x x x
「例3lim tanx-sinx x→>0 3 sIn x 「解]lin tan x-sin x x→>0smnx 1-cosx 1 1-cos x x-0 sin x cosx x0 sinx =lim 2 2021/2/20
2021/2/20 14 x x x x 3 0 sin tan sin lim − → 21 lim 2 2 21 0 = = → xx x ? sin tan sin lim 3 0 = − → x x x x [ 例3] [解 ] xx x 2 0 sin 1 cos lim − = x x → x x cos1 sin 1 cos lim 2 0 − = →
tanx-sinx=0(x3)是x的3阶无穷小 tan x=o(x tanx-sinx 讨论:当x→Q时,tanx~x,sinx~x tanx-sin x →lim =lim -re 0 x→0 sIn x x-0 代数和不能代换 2021/2∠ 15
2021/2/20 15 tan sin ( ) 3 x − x = O x 2 tan sin ~ 3 x tan sin ( ) x − x 2 x − x = x 是 x 的 3 阶无穷小 lim 0 sin tan sin lim 3 0 3 0 = − = − → → x x x x x x x x 讨论: 当x →0时, tan x ~ x, sin x ~ x 代数和不能代换!