Tavlor公式 多项式是一类很重要的函数,其明显特点是结构 简单,因此无论是数值计算还是理论分析都比较方便 从计算的角度看,只须加、减、乘三种运算,连除法 都不需要,这是其它函数所不具备的优点。 用多项式近似地表示给定函数的问题不仅具有实 用价值,而且更具有理论价值。一般的函数不好处理 先用较好处理的多项式近似替代,然后通过某种极限 手续再过渡到一般的函数。 “以直代曲”就是用一次多项式去近似给定函数
文件格式: PPT大小: 969.5KB页数: 47
定积分的几何应用 一、平面图形的面积 1直角坐标系 作为一般情况讨论,设平面图形由[a,b]上连续的两条曲线y=f(x)与y=g(x)(f(x)≥g(x)及两条直线x=ax=b所围成在[a,b上任取典型小区间[xx+dx与它相对应的小曲边梯形的面积为局部量dA
文件格式: PPT大小: 860KB页数: 37
前面我们已经介绍了定积分在几何方 面的应用,我们看到,在利用定积分解决几 何上诸如平面图形的面积、平面曲线的弧长、 旋转体的体积等问题时,关键在于写出所求 量的微元 定积分在物理方面的应用的关键也是 如此,希望大家注意如何写出所求量的微元 微功、微压力、微引力等
文件格式: PPT大小: 444.5KB页数: 25
上一章,已经系统地介绍了定积分的基本 理论和计算方法。在这一章中,将利用这些知 识来分析解决一些实际问题。定积分的应用很 广泛,在自然科学和生产实践中有许多实际问 题最后都归结为定积分问题。本章不仅对一些 几何物理量导出计算公式,更重要的是介绍运 用“微元法”将所求的量归结为计算某个定积 分的分析方法
文件格式: PPT大小: 161.5KB页数: 9
在上一节我们已经看到,直接用定义 计算定积分是十分繁难的,因此我们期 望寻求一种计算定积分的简便而又一般 的方法。我们将会发现定积分与不定积 分之间有着十分密切的联系,从而可以 利用不定积分来计算定积分
文件格式: PPT大小: 535.5KB页数: 28
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文件格式: PPT大小: 560.5KB页数: 23
定积分的概念 前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题定积分,它是微分(求局部量 )的逆运算(微分的无限求和求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用
文件格式: PPT大小: 801.5KB页数: 44
上一节我们建立了积分学两类基本问题 之间的联系微积分基本公式,利用这 个公式计算定积分的关键是求出不定积分 ,而换元法和分部积分法是求不定积分的 两种基本方法,如果能把这两种方法直接 应用到定积分的计算,相信定能使得定积 分的计算简化,下面我们就来建立定积分 的换元积分公式和分部积分公式
文件格式: PPT大小: 1.03MB页数: 37