(6)u(r)f(r) + v(r)g(r) = d(α)注意如果 f(r),g(r),d(r) E P[r],且有等式 f(r)u(r)十g(α)(α)=d(r)成立,那么d(α)不一定是f(α)与g(α)的最大公因式.例如,令f)=,g()=十1,那么以下等式成立:(+2)+(+1)(1)=22+2—1,但22+2—1显然不是f(α),g(r)的最大公因式如果d(α)是f(z),g(r)的公因式,又满足等式(6),那么d(a)就是f(α),g(r)的一个最大公因式.(2)若d(r)是f(r)与g(r)的一个最大公因式,则对P中任-非零数c,cd()也是f(a)与g(r)的最大公因式,用记号(f(r)g(r))表示f(r)与g(r)的首项系数为1的最大公因式,则(f(r),g(α))是唯一的(3)用辑转相除法可求出两个多项式的最大公因式.最大公因式不因数域P的扩大而改变二、互素的定义、性质1.设f(r),g(r)E P[r],若(f(α),g(α))=1,则称f(r)与g(a)互素(或互质)·2.互素的性质(1)设f(r),g(ar),h(r) E P[r], 若 (f(r),g(r)) = 1,(f(r),h(r)) = 1, 则(f(r),g(r)h(r)) = 1.(2)设f(ar), g(r),,h(r) E P[r], 若 f(r)lg(r)h(r) 且(f(a),g(r))= 1,则有f(r)h().(3)设f(r),g(r),h()EP[,若f(a)|h(r),g(r)lh(α)且(f(),g(a))二 1,则有 f(a)g(a)[h(a).(4)设f(α),g(r)EP[],(f(r),g(r))一1,当且仅当存在u(α),v(r) E P[r],满足u(α)f(r)+(r)g(r) = 19
应用举例最大公因式例1设f()=3+(1+t)r2+2+2u与g()=+t2+u的最大公因式是一个二次多项式,求t,u的值解法一(辗转相除法)3+(1+1)r2+2+243r+2+M+t?+ur3+2r+ur12(z)m91(z)=1r+(t-2)ri()=r?+2r+u(t-2)r2—ur+u.(t-2)r2+2(1-2)t+(t2)ur2(r)=--(u+2t--4)r+(3-)事因为最大公因式是二次多项式,必须且只须余式72(2)=0, (u + 2t 4) = 0即(u(3 t) = 0(u0[2=-2或解得(t=2或t=3解法二(比较系数法)设f(r)=(2+ar十b)(+c)g()=(r2+ar+b)(+d),则有f(r)(r + d) = g(r)(r + c)即 r+(1 +t+d)r3+/(1+t)d+2/r2+(2u+2d)x+ 2ud=+(t+c)3+tcr2+ur+cu比较两端系数得1+ d = c,(1 + t)d + 2 = tc,2u+2d = u,2ud cu由u(2d-c)=0得u0或c=2d,分别解得(u = 0(z2或(t2lt2 =3例2设f(r),g(r)EP[],a,b,c,dEP,且ad一bc±0,试证:(af(r) + bg(r),cf(r) + dg(r)) 二 (f(r),g(r)).10
证明令af(a)+bg(r)=fi(r),cf(r)+dg(r)=gi(r),(af(r)+bg(r),cf(α)+dg(r)) = (fi(r),gr(r))=d,(r),(f(r),g(r))=d(z).要证d(z)=d(x).先证它们相互整除因为d()/f(),d(r)ig(r),所以d(r)[af(r)+bg(α),d(r)/cf(r) + dg(r).即d(r)lfi(r),d(r)lgr(r).从而d(r)[d,(r).又因为adbc≠0,所以bdf(r) =ad begi(r)ad befi(r) -Cad = nfi(z) + a = ngi(2)g(r) 仿照上面的证明,得d(r)ld(r)d,(r)与d(r)相互整除,且首项系数都为l,所以di(r)=d(r)。即(af(r)+bg(r),cf(r)+dg(r))=(f(r),g(r))说明(1)本例还可以按定义证明d(r)是af(r)+bg(r)与cf(r)十dg(r)的最大公因式(2)当a=1,b= 0,c=1,d=±1时,则有(f(r),g(r))=(f(r),f(r) ± g(r)).r?r2r例 3 求(1 +营:(n - 1)!2!21n!r222t"解令f()=1+g(r) =1+x212!n!2-1T(c= 1),则f(z) - g(z) =由例2知,(f(r),g(r))=+.r2r++*一).显然,一的任(f(α),f(r)一g(r))=(1+x+21n!'n!n!何一个次数大于零的因式(1≤i≤)都不是f()的因式所以(f(a),f(x) 一 g(r)) = 1. 于是(f(r),g(r)) = 1.例4证明:(1)(f,g)h (fh,gh);(2)(f1,g1)(f2,92)=(fif2,f1g2,gif2,g1g2).11
此处,9,h,f1,f2,91.92等都是P中多项式并且h的首项系数为 1.证明(1)令(f,g)一d,按定义证明dh是fh与gh的最大公因式.因为d|f,dlg,所以dh|fh,dh|gh.即dh是fh与gh的公因式.设di是fh与gh的任一公因式,则dilfh,d,lgh.又由(f,g)一d可知,有u,vEP[a,满足fu+gu=d.从而有(fh)u+(gh)v=dh.便知d,ldh.所以dh是fh与gh的一个最大公因式.注意到h的首项系数为1,便得dh=(fh,gh).即(f,g)h=(fh,gh)(2)由(1)知(f1,g1)(fz,gz) (fi(f2,g2),g1(f2,g2))=((f1f2,f192),(g1f2,9292))=(fif2,f1g2,gif2,91g2).例设f(),g()是p[中不全为o的多项式,(f(),g())=1,求()=(-1)f()+(+1)g()与()=(r2一1)f(z)+(az一)g()的最大公因式.解 p(α) = ( - 1)[(r2 + + 1)f(r) + (r2 + 1)g(r)) ( - 1)r(r),() = (1)[(α+1)f()+ag() (-1)(),由例 4知,((r),(r))=(一 1)((r),())。下面求((),)).设((),())=d(),则d()[()一().即d()f()+g().又由()=(+1)()+ag()=(f()+g())+f()及d()),得d()f().再由d()f(r)十g(r),得d(a)lg(a).而已知(f(r),g(r))=l,故dr)=1.所以(p(α),(r)) = 一 1.二、互素例6设f(z)≠0,g(r)0,证明:(1)若对任意多项式h(r),由f(r)ig(r)h(a)可得到f(r)lh(r),则必有(f(α),g(r))=1;12
(2)若对任意多项式h(r),由f(r)|h(r),g(α)h(a)可得到f(r),g()(h(α),则必有(f(r),g(r)) = 1证明(用反证法)(1)若不然,设(f(r),g(α))一d(),a(d(r)) >0, 且 f(r) 二 d(r)fi(r), g(r) = d(a)gi(r), 其中a(fi(r))<a(f(r)),则g()f,(r)=d(r)gi(r)fi(α)=f(r)gi(α).所以f(a)lg(r)fi(r).由题设条件可得到f(a)lfi(r).这与a(fi(r))<a(f(r))矛盾. 所以(f(r),g(r)) = 1.(2)若不然,设(f(r),g(r))d(a),a(d(r))> 0,且f(a)=d(r)fi(r),g(α) = d(r)gi(r),其中a(fi(r)<a(f(r)),a(gi(r))<a(g(r)).和(1)的证明类似,有f(r)lg(r)fi(r).显然,g(r)g(r)fi(r).由题设条件可得到f(r)g(r)lg(r)fi(r).这与a(g(r)fr(r))<a(f(r)g(r))矛盾.所以(f(r),g(a))= 1.例7证明:(f(r),g(r)h(r))=1的充分必要条件是(f(z)g(r)) = 1,(f(r),h(r)) = 1.证明充分性设(f(r),g(r))=1,(f(r),h(r))=l,则有多项式u(r)(),uz(r),"z(r)使得ui(r)f(r) + vi(r)g(r) = luz()f() + 2()h() = 1两式相乘得[ut()uz(r)f(r) + vi(r)v2(r)h(r) + uz(α)vi(r)g(r)]f() +(v(r)2(r))g(r)h(r) = 1再由多项式互素的充要条件即知(f(x),g(r)h(r)) = 1必要性设(f(r),g()h(r))=l,则有多项式u(a),v()使得u()f(r) + v(r)g(r)h(r) = 1因此,(f(r),g(r))=1,(f(a),h(r))=1.例8证明下列条件等价:13