2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版)一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。(1)下列曲线中有渐近线的是1(B) y=x?+sin x.(D)(A) y=x+sin x.(C)y=x+sin-x.1y=x?+sin-x1x+sin-f(x)1X= lim(1+【解析】a=lim=lim-sin-x-+oxx-→oxX→oxA11=0b = lim[f (x)-ax]= lim[x+ sinx]=limsin-Xx0..y=x是y=x+sin-的斜渐近线x【答案】C(2)设函数f(x)具有2阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1)上((B)当f(x)≥0时,f(x)≤g(x)(A)当f(x)≥0时, f(x)≥g(x)(C)当 f(x)≥0时, (x)≥g(x)(D)当 f'≥0时,f (x)≤g(x)x【解析】当f"(x)≥0时,f(x)是凹函数f(x)而g(x)是连接(0,f(o))与(1,f(1)的直线段,如右图0故f(x) ≤g(x)【答案】D(3)设(x,)是连续函数,则d(a,)*a aa+ay(B) J"axf"f(x, )dy+J ax"f(x, )dy
[de e+no f(rcos,rsin)dr+J def'f(rcos,rsing)drC)(D)(de coo+ino f(rcos,rsin)rdr+["def'f(rcos,rsin)rdr【解析】积分区域如图0Sy≤1.Ji-y2≤x≤1-y元≤0≤元,用极坐标表示,即:D:0≤r≤121D:0≤0≤"0≤r2cos+sine【答案】D"(x-acosx-bsinx)"d(4)若"(x-a,cosx-b,sinx)’dx=min贝a,cosx+b, sin x=(A)2元sinx(B) 2cosx.(C) 2元sinx.(D)2元COSx【解析】令z(a,b)==(x-acosx-bsinx)dxZ,=2= (x-acosx-bsin x)(-cosx)dx=0(1)(2)Z, =2["(x-acosx-bsinx)(-sinx)dx=02af: cos xdx=0由(1)得故a=0,a,=0Joxsin xdx由(2)得=2b =2Jsin'xdx【答案】A10ba00b0(5)行列式d0UC00cd(A) (ad-bc)2(B)-(ad-bc)2.(c) ad-bc.(D)b?c2-a2 d?060a0JoaDlab00ba0+ d(-1)*+4按第4行展开c(-1)4+10D0【解析】01o0dCd0dc00c4
=-c-b(-1)32/a b|+d a(-1)la bcdcd=(ad-bc)-bc-ad(ad-bc)=(ad-bc)(bc-ad)=-(ad -bc)2【答案】B(6)设α,αz,α,均为3维向量,则对任意常数k,l向量组α,+kα,α,+lα线性无关是向量组α,,αz,α,线性无关的()(A)必要非充分条件。(B)充分非必要条件.(C)充分必要条件.(D)既非充分也非必要条件(1 0)01知,【解析】由(α1+kα3α2+lα3)=(αiα2α3)(ki)10当α1,α2,α3线性无关时,因为¥001所以α1+kα3α2+lα3线性无关反之不成立如当α3=0,α1与α2线性无关时,α1,α2,α3线性相关【答案】A1(7)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=((A) 0.1(B)0.2(C)0.3(D)0.4【解析】P(A-B)=P(A)-P(AB):A与B相互独立:.P(AB)=P(A)P (B):.P(A-B)=P(A)-PA)P(B)=P(A)I1-P(B)1=0.3P(A)(1-0.5)=0.3:.P(A)=0.6P(AB)=P(A)P(B)=0.6X05=0.3:.P(B-A)=P(B)-P(BA)=0.5-0.3=0.2【答案】B(8)设连续性随机变量X,与X2相互独立,且方差均存在,X,与X2的概率密度分别为f(x)与f,(x),随机变量Y的概率密度为f(y)=[f(y)+f2(y)],随机变量Y2-1(X+X)则()2(A)EY>EY2, DY>DY2(B)EY1-EY2, DY{=DY2(C)EY,=EY2, DY,<DY2(D)EY,=EY2, DY,>DY,【解析=()+(+()y
FX4XEY,=E[(X,+X,)]=EX,+EX,22..EY =EYEY?=EX?EXf2(0)kly=f.(y)+2211EX?+!1EX?+EX,-(EX,)?-(EX,)?.EX,EXDY, =EXEXEX(22225EX?+LEX?DX +-DX,+EX,EX444421I DX,+ DX,+[EX? +EX; -2E(X,X,)] -[E(X,-X,)DX.DX≥4X41DXDY=DDX,+-(X, +X,)1244.. DY>DY2【答案】D二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上。(9)曲面z=x(1-siny)+y2(1-sinx)在点(1,0,1)处的切平面方程为[2x(1-siny)-y?cosx]=2【解析】在点(1,0,1)处,Z(1,0,1)(1, 0, 1)[-x?cosy+2y(1-sinx)]-(1,0, 1)(1,0,1)切平面方程为z(x-1)+z(y-0)+(-1(z-1)=0即2x-y-z-1=0(10)设f(x)是周期为4的可导奇函数,且f(x)=2(x-D,xe[0,2],则f(7)=【解析】:f(x)是周期为4的可导函数. f(7)=f(3)=f(-1)=-f()且f(0)=0又f(x)=2(x-1)f(x)=x-2x+c将f(0)=0代入得C=0
.. f(x)=x2-2xxe[0,2]: f(1)=-1 从而f(7)=-f()=1(11)微分方程xy+y(lnx-lny)=0满足条件y(1)=e的解为y即xy+yln==0两边同除x得【解析】xy'+y(nx-lny)=0yy+2n==0xydy典代入上式得令u=之,则y=xu,=u+xdxdxxdu+uln!=0整理得u+xdxdu1-dx两端积分得u(Inu-1)xdudx+InCu(Inu1xrd(Inu-1)dx+InClnu-1Inu-1=cxu=ec+y=xecr+!将y(1)=e代入上式得C=2.y=xe2x+l(12)设L是柱面x+y=1与平面y+z=0的交线,从z轴正向往z轴负向看去为逆时针方向,则曲面积分[[1zdx+ydz=[x=cost【解析】令y=sintt: [0,2元]Z=-sint[ zdx+ ydz=](-sint(-sint) +sint(cost)hit(2*1-cos2 dt+](sint)d sint2=元+0=元