例2.设A、BεPmx为两个取定的矩阵,定义变换o(X)= AX,VX e puxnT(X) = XB,则o, 皆为pnxn 的线性变换,且对VXe Pnxn,有(αt)(X) = α(t(X) = (XB) = A(XB) = AXB,(tTo)(X) = t(α(X) = t(AX) = (AX)B = AXB.. ot = to.87.2线性变换的运算A
§7.2 线性变换的运算 ( ) , X AX = 例2. 设A、B 为两个取定的矩阵,定义变换 n n P 则 , 皆为 P n n 的线性变换,且对 X Pn n , 有 ( )( ) ( ( )) ( ) ( ) , X X XB A XB AXB = = = = ( )( ) ( ( )) ( ) ( ) . X X AX AX B AXB = = = = ( ) , X XB = n n X P =
线性变换的和1. 定义设,T为线性空间V的两个线性变换,定义它们的和为: (α)(α)=(α)+(α),αV则α+t也是V的线性变换。事实上, (+)(α+β)=(α+β)+(α+β)=(α)+()+t(α)+t(β) =(+t)(α)+(+t)(β)(α +t)(kα) = (kα)+ t(kα) = ko(α)+kt(α)= k(α(α) + t(α) = k(α + t)(α).87.2线性变换的运算A
§7.2 线性变换的运算 则 + 也是V的线性变换. 二、 线性变换的和 1.定义 设 , 为线性空间V的两个线性变换,定义它们 的和 + 为: ( + = + )( ) ( ) ( ), V 事实上, ( )( ) ( ) ( ) + + = + + + = + + + = + + + ( ) ( ) ( ) ( ) ( )( ) ( )( ), ( )( ) ( ) ( ) ( ) ( ) + = + = + k k k k k = + = + k k ( ( ) ( )) ( )( ).
2.基本性质(1)满足交换律:+T=+(2)满足结合律:(+)+=+(+)(3)0+α=+0=,0为零变换,(4)乘法对加法满足左、右分配律:(t+8)=ot +os(t +8)α = to +8o87.2线性变换的运算A
§7.2 线性变换的运算 (3) 0 0 , + = + = 0为零变换. (4)乘法对加法满足左、右分配律: ( + = + ) ( + = + ) 2.基本性质 (1)满足交换律: + = + (2)满足结合律: ( + + = + + ) ( )