上游通大学 SHANGHAI JIAO TONG UNIVERSITY 4,=a2ua, 0<x<l,t>0 类齐次边界条件 u(0,t)=0=u(l,t),t>0 u(x,0)=(x), 0≤x≤1 解:令 九=0→X=B。 九>0时,X"+九X=0→ u(x,t)=X(x)T(t) X=Asin几x+Bcos几x, X"+X=00<x<1 X'(0)=0,X'(I)=0 X'(0)=AV元=0,X'(U=-BV元sin√l=0 T'+a2T=0 因有他人司0=123礼 2<0,无非零解. →固有函数X,(x)=B.cos":
u(x,t) = X (x)T(t) 2 T aT ′ + = λ 0 ′ = ′ = ′′ + = < < (0) 0, ( ) 0 0 0 X X l X λX x l II类齐次边界条件 解:令 λ < 0, 无非零解. 0 λ =⇒ = 0 X B 0, 0 sin cos , X X X A xB x λ λ λ λ > + =⇒ ′′ = + 时 2 , 0 ,0 (0, ) 0 ( , ), 0 ( ,0) ( ), 0 t xx x x u au x lt u t u lt t ux x φ x l = << > = = > = ≤ ≤ X A Xl B l ′ ′ (0) 0, ( ) sin 0 == = λ λλ − = 2 , 1,2,3, n n n l π λ ⇒ == 固有值 L ( ) cos n n n Xx B x l π ⇒ = 固有函数
上游充通大粤 nπ T'+a2λT=0 SHANGHAI JIAO TONG UNIVERSITY Y,(x)=B,cos 元=0→T0=0→T=A→40=XT0=BA,=C0 2 anπ >0-T+g7.=0一7,=4e 2 2.22 anπ1 un =XT A.Be nπ coS-x =Ce 1 nπ coS X 得到一系列分离变量形式的解,满足PDE和齐次边界条件,但 不满足初始条件。由叠加原理,设原问题的解为 u=∑,=C+∑C,e 12 nπ cos n=0 n= (x,0)=(x)=C+∑Cco nπ -x n=l CXx.C-cos-
0 2 T′ + a λT = λ = 0 T0 ′ = 0 T A 0 0 = λ > 0 0 2 2 2 2 n ′ + Tn = l a n T π t l a n n n T A e 2 2 2 2 π − = u0 = X0T0 = B0A0 = C0 得到一系列分离变量形式的解,满足PDE和齐次边界条件,但 不满足初始条件。由叠加原理,设原问题的解为 x l n A B e t l a n n n π π cos 2 2 2 2 − n n n = u = X T x l n C e t l a n n π π cos 2 2 2 2 − = ( ) cos , n n n Xx B x l π = 22 2 2 0 0 1 cos a n t l n n n n n u u C Ce x l π π ∞ ∞ − = = = = + ∑ ∑ 0 1 ( ,0) ( ) cos n n n ux x C C x l π φ ∞ = = = +∑ 0 0 0 1 2 ( )d , ( )cos d l l n n C x xC x xx l ll π = φ φ = ∫ ∫ ∈