概率论与敖理统计「 2.二项分布 设随机变量X服从参数为n,p二项分布, 其分布律为 X=对-及r-pr=2 则有 0<p<1. E(X)=Zk:P(X-K k=0 =2)pu-pr
2. 二项分布 { } (1 ) ,( 0,1,2, , ), n k n k P X k p p k n k 则有 0 p 1. ( ) { } 0 E X k P X k n k k n k n k p p k n k (1 ) 0 设随机变量 X 服从参数为 n, p 二项分布, 其分布律为
概率伦与散理统外「 名su-pr kn! 台k-0n-0-h-p-'1-p)H p(n-1)' 台k-0n-1)-k-1pp-'1-p)-w (n-1)g =pp+(1-p)"- =p
k n k n k p p k n k kn (1 ) !( )! ! 0 1 ( 1) ( 1) 1 (1 ) ( 1)![( 1) ( 1)]! ( 1)! k n k n k p p k n k np n 1 [ (1 )] n np p p np. 1 ( 1) ( 1) 1 (1 ) ( 1)![( 1) ( 1)]! ( 1)! k n k n k p p k n k n npnp
概率论与敖理统计】 D(X)=E(X2)-[E(x)I2 E(X2)=EX(X-1)+X] =EX(X-1)川+E(X) =∑kk-1)Cp(1-p)-+p k=0 -20-p+厚
2 2 D(X) E(X ) [E(x)] ( ) [ ( 1) ] 2 E X E X X X E[X(X 1)] E(X) k k C p p np k n k n k k n ( 1) (1 ) 0 p p np k n k k k n k n k n k (1 ) !( )! ( 1) ! 0
概率伦与散理统外「 台n-k:h-2ppI-p)3e =m(n-Dp (u-2)! +吧 =n(n-1)p2Lp+(1-p)I"-2+p =(n2-m)p2+p. D(X)=E(X2)-E(X) =(2-n)p2+p-(p)2 = p1-p):
n n p p p np n 2 2 ( 1) [ (1 )] ( ) . 2 2 n n p np 2 2 D(X) E(X ) [E(X)] 2 2 2 (n n) p np (np) np(1 p). np p p n k k n n n p k n k n k 2 ( 2) ( 2) 2 2 (1 ) ( )!( 2)! ( 2)! ( 1) np(1 p)