第8章二次型 庄81三次型及其矩阵表示 王.3惯性定理和规范形 庄·84实二次型的正定性 85二次曲面的分类 ●总结习题课 上页
第8章 二次型 8.1 二次型及其矩阵表示 8.2 二次型的标准形 8.3 惯性定理和规范形 8.4 实二次型的正定性 8.5 二次曲面的分类 总结 习题课
只含有平方项的二次型 k1y2+k2y2+…+k n.n 称为二次型的标准形(或法式) 例如 f(,x2,x3)=2x1+4x2+5x3-4x,-x, f(x1,x2x3)=x1x2+x1x3+x2 都为二次型 f(x1,x2,x)=x2+4x2+4x3 为二次型的标准形 上页
只含有平方项的二次型 2 2 2 2 2 1 1 n n f = k y + k y ++ k y 称为二次型的标准形(或法式). 例如 ( ) 1 3 2 3 2 2 2 1 2 3 1 f x , x , x = 2x + 4x + 5x − 4x x 都为二次型; ( ) 2 3 2 2 2 1 2 3 1 f x , x , x = x + 4x + 4x 为二次型的标准形. ( ) 1 2 3 1 2 1 3 2 3 f x , x , x = x x + x x + x x
对于二次型,我们讨论的主要问题是:寻求 可逆的线性变换,将二次型化为标准形 设 xI=CuVi+ Cuy2t.+cnn, x2=C21y,+c22y2t'.+ C2nyn, =Cn11+cn2y2+…+Cmyn 记C=(c则上述可逆线性变换可记作 x=C 上页
= + + + = + + + = + + + n n n nn n n n n n x c y c y c y x c y c y c y x c y c y c y 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 1 1 2 2 1 , , 设 对于二次型,我们讨论的主要问题是:寻求 可逆的线性变换,将二次型化为标准形. C (c ), 记 = ij 则上述可逆线性变换可 记作 x = Cy
说明 1.二次型经可逆变换x=O后,其秩不变,但∫ 的矩阵由4变为B=CTAC; 2.要使二次型经可逆变换x=C变成标准形, 就是要使 y ClACy=kiyi +k2y2+.+kny kI VI =(y1,y2,,yn k2 J k八y 也就是要使C′AC成为对角矩阵. 上页
说明 2 2 2 2 2 1 1 n n T T y C ACy = k y + k y + + k y 就是要使 2. 要使二次型f经可逆变换 x = Cy变成标准形, ( , , , ) , 2 1 2 1 1 2 = y y y k k k y y y n n n 也就是要使C AC成为对角矩阵. T ; 1 , , A B C AC . x Cy f T = = 的矩阵由 变为 二次型经可逆变换 后 其秩不变 但
由于对任意的实对称矩阵A,总有正交矩阵P, 生使P!P=A即PBP=A把此结论应用于二次 型,有 定理2任给二次型∫=∑anxx, n=an总有 i,j=1 庄正变换x=乃使/化为标准形 ∫=λ1y2+y2+…+nyn, 生其中,,…,是的矩阵4=(q)特征值 上页
型 有 使 即 把此结论应用于二次 由于对任意的实对称矩阵 总有正交矩阵 , , . , , 1 = = − P AP P AP A P T ( ) 正交变换 使 化为标准形 定 理 任给二次型 总 有 x Py f f a x x aij a ji n i j ij i j , 2 , , 1 = = = = , 2 2 2 2 2 1 1 n n f = y + y ++ y , , , ( ) . 其中1 2 n是 f 的矩阵A = aij 的特征值