再证唯一性 若同时有∫(x)=q(x)g(x)+r(x) 其中a(r(x)<(8(x)或(x)=. 和∫(x)=q(x)g(x)+r(x), 其中("(x)<(8(x)(x)=0 U q(x8(+r()=q (g(+r() 即(q(x)-(x)(x)=r(x)-(x)
再证唯一性. 若同时有 f x q x g x r x ( ) = + ( ) ( ) ( ), 其中 (r x g x r x ( )) ( ( ))或 ( )=0. 其中 (r x g x r x ( )) ( ( ))或 ( )=0. 和 f x q x g x r x ( ) = + ( ) ( ) ( ), 则 q x g x r x q x g x r x ( ) ( ) + = + ( ) ( ) ( ) ( ) 即 (q x q x g x r x r x ( )- ( )) ( )= ( )- ( )
若q(x)≠q(x),由g(x)≠0,有r(x)-r(x)≠0 a(a(x)-g(x)+a(g(x)=a((x)-r(x) ≤max(a(),(T) <Q((x) 但((x)-(x)+((x)≥20(3(x),矛盾 所以q(x)=q(x),从而r(x)-(x) 唯一性得证
若q x q x g x r x r x ( ) ( ),由 ( ) 0, 0 有 ( )- ( ) (q x q x g x r x r x ( )- ( ))+ ( ( ))= ( ( )- ( )) max , ( (r r ) ( )) 但 (q x q x g x g x ( )- ( ))+ ( ( )) ( ( )), 矛盾. ( g x( ) ) 所以 q x q x ( ) = ( ), 从而 r x r x ( )= ( ). 唯一性得证.