Poyiudx例4计算Jsex/Inx(1-Inx)31d(ln x)rer解原式==e/In x(1- In x)3d(lnx)d/Inxreye21.e/Inx/(1-Inx)/1-(V/lnx)=2[aresin(/Inx)], =
例4 计算 解 . ln (1 ln ) 4 3 − e e x x x dx 原式 − = 4 3 ln (1 ln ) e (ln ) e x x d x − = 4 3 ln (1 ln ) e (ln ) e x x d x − = 4 3 2 1 ( ln ) ln 2 e e x d x 3 4 2 arcsin( ln ) e e = x . 6 =
x+2例5.计算dx/2x+1解: 令t= /2x+1,则 x="-1,dx=tdt, 且2当x=0时,t=1; x=4时,t=3t-1+22原式=tdtt-(c+3)d22-r+30/13
例5. 计算 4 0 2 d . 2 1 x x x + + 解: 令 t x = + 2 1 , 则 2 1 , d d , 2 t x x t t − = = 当 x = 0 , 时 x = 4 , 时 t = 3 . ∴ 原式 = 2 3 1 1 2 2 d t t t t − + 3 2 1 1 ( 3)d 2 = + t t 1 1 3 ( 3 ) 2 3 = + t t 3 1 22 3 = t = 1; 且
dxV3xdxx?/1+x?V5-4xdxarcsin x3dx.V1+x-Vx/(1-x)x2R1 - sin 2x4dx.2dx.元1+cosx1+sin2x
1 3 1 2 2 x + x dx 2 0 1 sin 2 . 1 sin 2 x dx x − + 1 3 4 . 1 dx + − x x . 5 4 1 −1 − x xdx . (1 ) arcsin 2 1 4 1 − dx x x x 4 4 1 . 1 cos dx x − +
(1-cosx)dx.dx(1+ cos x)(1- cos x)1+cosxK4(1-cosx)4dx.dx4/A(1+ cosx)(1- cos x)中I+cosx
4 4 1 1 cos dx x − + 4 4 (1 cos ) . (1 cos )(1 cos ) x dx x x − − = + − (1 cos ) . (1 cos )(1 cos ) x dx x x − = + − 1 1 cos dx + x
几个关于特殊函数的定积分性质例6 当f(x)在[-a,a|上连续,且有(1)f(x)为偶函数,则", f(x)dx =2], f(x)dx(2)f(x)为奇函数,则J" (x)dx = 0证f", f(x)dx = f", f(x)dx+ f" f(x)dx,在[" f(x)dx中令x=-t
证 ( ) ( ) ( ) , 0 0 − − = + a a a a f x dx f x dx f x dx 0 6 ( ) [ , ] (1) ( ) ( ) 2 ( ) (2) ( ) ( ) 0 a a a a a f x a a f x f x dx f x dx f x f x dx − − − = = 例 当 在 上连续,且有 为偶函数,则 为奇函数,则 0 - ( ) , a f x dx x t = − 在 中令 几个关于特殊函数的定积分性质