XaSongks5s-1例 已知F(s)=(s+1)(s-2),求 f(l)=史[F(s)].解方法二利用留数法求解(1) Si =-1, Sz =2为F(s)的一阶极点,5s-1esrRes[F(s)e't, -1]=2e-S-2s=-15s-1estBe2tRes[F(s)est, 2]:Is=2s+1(2) f(t) = Res[F(s)est, -1]+Res[F(s)est, 2]=2e-t+3e2t.H
解 方法二 利用留数法求解 2 3 . 2 e e t t = + − (1) s1 = −1, s2 = 2 为 F(s) 的一阶极点, 1 e e 2 5 1 Res[ ( ) , 1] − = − − − = s st st s s F s 2e , − t = 2 e e 1 5 1 Res[ ( ) , 2] + = − = s st st s s F s 3 . 2 e t = (2) ( ) Res[ ( )e , 1] Res[ ( )e , 2] st st f t = F s − + F s
XeSogk1例 已知F(s)=(s-2)(s-1)},求 (l)= 史"[F(s)].P228例9.17解方法一利用查表法求解1(1) F(s) :(s -2)(s -1)XaSo5(重根)SS-ISpat=te"t,有(2) 由±-1sS-0f(t) =L-'[F(s)] =e?t-e'-te
. 2 1 ( 1) 2 − + − + − = s C s B s A (重根) 2 ( 2)( 1) 1 ( ) − − = s s (1) F s 解 方法一 利用查表法求解 ( ) [ ( )] 1 f t F s − = e e e . 2t t t = − − t 1 − 1 − 1 (2) 由 [ ] 有 1 1 s − a − e , at = [ ] 2 1 ( ) 1 s − a − e , at = t P228 例9.17