第三章多维随机变量及其分布 第1页 §3.5条件分布与条件期望 对二维随机变量X,), >在给定取某个值的条件下,的分布 在给定X取某个值的条件下,的分布 4 April 2025
第三章 多维随机变量及其分布 4 April 2025 第1页 对二维随机变量(X, Y), ➢ 在给定Y取某个值的条件下, X的分布; ➢ 在给定X取某个值的条件下, Y的分布. §3.5 条件分布与条件期望
第三章多维随机变量及其分布 第2页 3.5.1条件分布 ()条件分布列: P=X=y=y)是 4 April 2025
第三章 多维随机变量及其分布 4 April 2025 第2页 (1) 条件分布列: 3.5.1 条件分布 | ( | ) ij i j i j j p P X x Y y p p• = = = =
第三章多维随机变量及其分布 第3页 (2)连续型随机变量的条件密度函数: 定义设二维随机变量(X,Y)的概率密度为 p(x,y),X,Y)关于Y的边缘概率密度为py(y). 若对于固定的y,pyy)>0,则称 P(,y) 为在Y=y Pr(y) 的条件下X的条件概率密度,记为 p(xly)=2(v pr(y) 4 April 2025
第三章 多维随机变量及其分布 4 April 2025 第3页 定义 (2)连续型随机变量的条件密度函数: 设二维随机变量 (𝑋, 𝑌) 的概率密度为 𝑝 𝑥, 𝑦 , 𝑋, 𝑌 关于 𝑌 的边缘概率密度为𝑝𝑌 𝑦 . 若对于固定的 𝑦, 𝑝𝑌(𝑦) > 0, 则称 𝑝(𝑥, 𝑦) 𝑝𝑌(𝑦) 为在𝑌 = 𝑦 的条件下 𝑋 的条件概率密度,记为 𝑝(𝑥ȁ𝑦) = 𝑝(𝑥,𝑦) 𝑝𝑌(𝑦)
第三章多维随机变量及其分布 第4页 (3)条件分布函数: Σ P(X=xilY=y) F(xly)= X≤ uoa-r哥 p(ty) 4 April 2025
第三章 多维随机变量及其分布 4 April 2025 第4页 (3) 条件分布函数: 𝐹(𝑥ȁ𝑦) = 𝑥𝑖≤𝑥 𝑃(𝑋 = 𝑥𝑖 ȁ𝑌 = 𝑦) න −∞ 𝑥 𝑝(𝑡ȁ𝑦)𝑑𝑡 = න −∞ 𝑥 𝑝(𝑡, 𝑦) 𝑝(𝑦) d𝑡
第三章多维随机变量及其分布 第5页 注意 p(xly)= p(x,y) →p(x,y)=p(xly)pr) Pr(y) 联合分布、边缘分布、条件分布的关系如下 边缘分布 联合分布 联合分布 条件分布 4 April 2025
第三章 多维随机变量及其分布 4 April 2025 第5页 注意 联合分布、边缘分布、条件分布的关系如下 联合分布 边缘分布 条件分布 联合分布 𝑝(𝑥ȁ𝑦) = 𝑝(𝑥, 𝑦) 𝑝𝑌(𝑦) 𝑝(𝑥, 𝑦)= 𝑝(𝑥ȁ𝑦)𝑝𝑌(𝑦)