例9.6求解微分方程y (t) + @? y(t) = 0, y(O) = 0, y (0) = 解:对方程的两边做拉普拉斯积分变换,得到s?Y(s) - sy(O) - y (O) +@°Y(s) = 00其中 Y(s)= L[y(t)) 代入初值得到Y(s)= +020y(t) = L-"[Y(s)] = L-"= sinotS
例9.6求解微分方程 '' 2 ' y t y t y y ( ) ( ) 0, (0) 0, (0) + = = = 解:对方程的两边做拉普拉斯积分变换,得到 2 ' 2 s Y s sy y Y s ( ) (0) (0) ( ) 0 − − + = 代入初值得到 2 2 Y s( ) s = + 其中 Y s y t ( ) [ ( )] = L 1 1 2 2 y t Y s t ( ) [ ( )] [ ] sin s − − = = = + L L
例求函数f(t)=t"的Laplace变换(m为正整数)。P218例9.7解1利用导数的象函数性质来求解本题由 f(0)= f'(0)=... = f(m-I)(0) = 0 以及 f(m)(t) = m! 有L[ f(m)(t)] =L[m!]XaSongh= s" F(s) - sm-I f(0) - sm-2 f'(0)-...- f(m-1)(0)= s" L[f(t)] = s" L[t" ,m!m!故有[tm]L[1]L[m!]sm+1Sh解2用定义+
. ! +1 = m s m 解1 利用导数的象函数性质来求解本题 以及 ( ) ! 有 ( ) f t m m (0) (0) (0) 0 = ( 1) = = = = m− 由 f f f ( ) (0) (0) (0) −1 −2 ( −1) = − − − − m m m m s F s s f s f f [ ( )] ( ) f t m = [m!] 故有 [ ] m t [ !] 1 m s m = s [ f (t)] m = [ ], m m = s t [1] ! m s m = P218 例9.7 解2 用定义
XeSongla微分性质4象函数的导数P218性质 F'(s) =- [tf(t)];一般地,有 F(n)(s)=(-1)" [t"f(t)].XaSom由 F(s)= (t~ f(t)e-stdt 有证明a+80(" f(t)e-s$tdt :idiF'(s) =f(t)e-stdsas0(t~ tf(t)e-stdt =- L[tf(t)l;同理可得 F(n)(s) =(-1)" [t"f(t)]
二、微分性质 2. 象函数的导数 性质 F(s) = − [t f (t)]; 一般地,有 ( ) ( ) F s n ( 1) [t f (t)]. n n = − 证明 由 有 + − = 0 F(s) f (t)e d t st + − = 0 ( ) d d d ( ) f t e t s F s st + − = 0 [ f (t)e ]dt s st + − = − 0 t f (t)e d t st = − [t f (t)]; 同理可得 ( ) ( ) F s n ( 1) [t f (t)]. n n = − P218