引理7.设fi(α),..,fn(α)EK[cl 全不为零。假定n>2. 设1 <r< n. 记di(α) = gcd(fi(c), ..., fr(r)),d2(c) = gcd(fr+1(c), .. ., fn(c),d(α) = gcd(di(α), d2(c)).则d(α)是fi(αc),..,fn(α)的最大公因式。证明:由 d(a)ldi(c),d(a)ld2(c) 得知 d(α) 整除每个fi(α).假定h(a)整除每个f;(α),则h(α)整除fi(c),..,fr(c中任何一个,因而 h(a)ldi(α).同理h(α)ld2(c).所以h(α)|d()
Ún7. f1(x), . . . , fn(x) ∈ K[x] Ø""b ½ n > 2. 1 ≤ r < n. P d1(x) = gcd(f1(x), . . . , fr(x)), d2(x) = gcd(fr+1(x), . . . , fn(x)), d(x) = gcd(d1(x), d2(x)). K d(x) ´ f1(x), . . . , fn(x) úϪ" y²µd d(x)|d1(x), d(x)|d2(x) d(x) Ø z fi(x). b½ h(x) Øz fi(x), K h(x) Ø f1(x), . . . , fr(x) ¥?Û§Ï h(x)|d1(x). Ón h(x)|d2(x). ¤ ±h(x)|d(x). ✷
练习设fi(c),..,fn(c)不全为零,则它们的最大公因式存在且在相差一个非零常数的意义下唯
öS f1(x), . . . , fn(x) Ø"§K§ úϪ3 3"~ê¿Âe "