第十章Fourier分析在前一章,我们讨论了函数项级数,并把幂级数作为重要的特殊函数项级数加以讨论.为了研究周期现象,下面我们研究另一类特殊的函数项级数81Fourier级数函数列1,cos,sinr,cos2r,sin2r,...,cosnr,sinna,..称为三角函数系,有限和n(ak cos kr+ be sin ka)ao+k=1称为三角多项式,而形式和(akcoskr+bisinka)ao +k=1称为三角级数,其中ao,ak,bk等称为该三角级数的系数三角函数都是周期为2元的函数。一个自然的问题是,如果f是一个周期为2元的函数,能否用三角多项式去逼近它?为了讨论这一问题,以下我们假定f总是Riemann可积或反常绝对可积的函数定义(Fourier系数)设f为[一元,]上的Riemann可积函数,周期为2元令f(r)dr,ao:nf(α)sinkrdr, k =1,2,...f(a)coskrdr,b=ak =T7Tao,ak,bk称为f的Fourier系数,形式和ao+(ak cos ka + bk sin ka)2k=11
6HW Fourier :O Æ({, ^PPIicI, cI/\ y$QGPIic If}P. \vz!$ek, a^vz{QG$PIicI. §1 Fourier @K PI 1, cos x,sin x, cos 2x,sin 2x, · · · , cos nx,sin nx, · · · \8pPI_, fR a0 + Xn k=1 (ak cos kx + bk sin kx) \8p0iA, 1oAR a0 + X∞ k=1 (ak cos kx + bk sin kx) \8pcI, % a0, ak, bk %\=8pcI$_I. 8pPI+C!$\ 2π $PI. {@)1$]SC, 5M f C{@!$ \ 2π $PI, 98p0iA.yN? \P{]S, }a^g) f *C Riemann ^\5/^$PI. 7S (Fourier PK) ; f \ [−π, π] 9$ Riemann ^PI, !$\ 2π. a0 = 1 n Z π −π f(x)dx, ak = 1 π Z π −π f(x)cos kxdx, bk = 1 π Z π −π f(x)sin kxdx, k = 1, 2, · · · a0, ak, bk \ f $ Fourier _I, oAR a0 2 + X∞ k=1 (ak cos kx + bk sin kx) 1
称为f的Fourier级数或Fourier展开,记为80+Z(ax cos ka + bk sin ka)f(r)~2k=18000注(1)如果f()=+(akcoskar+bksinka)一致收敛,则由逐项积分-2k=1可得f()d=a元+cos krdr + bksinb.daa0元k=1同理,af(r)coskrd =coskrd+cos kr cosmrdr + bncoskrsinmrdm=1cos? krdr + 0 = akT= 0+a'对于bk有类似结果,这就是为什么我们要象前面那样定义Fourier系数(2)简单的观察表明,如果f为奇函数,则ak=0(k≥O),此时的Fourier展开称为正弦级数;如果f为偶函数,则bk=0(k≥1),此时的Fourier展开称为余弦级数的例1设为2元周期函数,且10<T<T,2'f(r) =0,=0,±元,102求f的Fourier展开解f为奇函数,因此ak=0.而bk=f(r) sin ka =sin krdsinkadr[1 - (-1)]2
\ f $ Fourier cI\ Fourier , e\ f(x) ∼ a0 2 + X∞ k=1 (ak cos kx + bk sin kx). Y (1) 5M f(x) = a0 2 + X∞ k=1 (ak cos kx + bk sin kx) {E, "i^8 # Z π −π f(x)dx = a0π + X∞ k=1 ak Z π −π cos kxdx + bk Z π −π sin bxdx = a0π W , Z π −π f(x)cos kxdx = Z π −π a0 2 cos kxdx + X∞ m=1 am Z π −π cos kx cos mxdx + bm Z π −π cos kx sin mxdx = 0 + ak · Z π −π cos2 kxdx + 0 = akπ / bk LuM, {C\>^yk(x) Fourier _I. (2) i$I , 5M f \&PI, ak = 0 (k ≥ 0), =$ Fourier \ccI; 5M f \!PI, bk = 0 (k ≥ 1), =$ Fourier \ ccI$. C 1 ; f \ 2π !$PI, ) f(x) = 1 2 , 0 < x < π, 0, x = 0, ±π, − 1 2 , −π < x < 0 + f $ Fourier . A f \&PI, ak = 0. 1 bk = 1 π Z π −π f(x)sin kx = 1 π · 1 2 Z π 0 sin kxdx − Z 0 −π sin kxdx = 1 kπ [1 − (−1)k ] 2
因此就得到了f的Fourier展开 sin(2k+1)r2f(r) ~2k+11-0例2设f为2元周期函数,且f()=r2,元≤≤元,求f的Fourier展开解f为偶函数,故bk=0,而rT222Tr? cos krdr:sinkrdr(分部积分)akkT= (-1)*4(k> 0)22元2-r?dr=ao3T这就得到了f的Fourier展开:元2coskarr2+4>-1)k1:23.k=1为了研究Fourier展开的收敛性,我们需要对系数ak,bk做一些估计定理1(Riemann-Lebesgue)设f在[a,b]上Riemann可积或反常绝对可积,则f(a) cos 入rda =, limlimf(r) sin Ardr = 0.证明Ve>o,Riemann可积或反常绝对可积的函数f可用阶梯函数逼近即存在阶梯函数9,使得 If(r) - g(r)]dr <e,此时,f(n) cos Azd - [" g(r)cos Arda|If(a) - g(a)d<e.因此,只要对阶梯函数证明结论即可,进而只要对[c,d[a,]上的常值函数证明即可:如果f=μ,则(sin Ad sin 入c)μcosArdrcos Addr21川l0, (>→+).入3
{#" f $ Fourier : f(x) ∼ 2 π X∞ k=0 sin(2k + 1)x 2k + 1 . C 2 ; f \ 2π !$PI, ) f(x) = x 2 , −π ≤ x ≤ π, + f $ Fourier . A f \!PI, G bk = 0, 1 ak = 2 π Z T1 0 x 2 cos kxdx = 2 π Z π 0 2 k x sin kxdx (8Æ^8) = (−1)k 4 k 2 (k > 0) a0 = 1 π Z π −π x 2dx = 2 3 π 2 {#" f $ Fourier : x 2 ∼ π 2 3 + 4X∞ k=1 cos kx k 2 (−1)k . \vz Fourier $Ep, ^qy/_I ak, bk .{mFd. 7B 1 (Riemann-Lebesgue) ; f Æ [a, b] 9 Riemann ^\5/ ^, lim λ→∞ Z b a f(x)cos λxdx = lim λ→+∞ Z b a f(x)sin λxdx = 0. XF ∀ ε > 0, Riemann ^\5/^$PI f sRPIy, bÆsRPI g, @# Z b a |f(x) − g(x)|dx < ε, =, Z b a f(x)cos λxdx − Z b a g(x)cos λxdx ≤ Z b a |f(x) − g(x)|dx < ε. , y/sRPIub, x1y/ [c, d] ⊂ [a, b] 9$PI b: 5M f = µ, Z d c µ cos λxdx = µ · Z d c cos λddx = µ · 1 λ (sin λd − sin λc) ≤ 2|µ| λ → 0, (λ → +∞). 3
对sin入r有完对类似的证明推论f的Fourier系数ak→0,b→0(k→+oo).这说明,周的函数作Fourier展开时,其高得分量的振幅是很小的反果f有更好的光滑性则其系数有更好的估计例反,设fEC1[一元,元]且 f(一元) = f(元), 则Lf(r) cos nrdran" f(a) sin nadaf(r).二sinnrf'(r) sin nrd = o(-), (Riemann - Lebesgue)n就般地,设fCk([,元),()(一)=(0)(),≤1,则同理,bn=o(an = o(-), bn = 0(92Fourier级数的收敛性在前就节积们已看到,反果C2[一,],f(-)=f(),f(一)=f+)则其Fourier系数满足估计an=o(元),bn=o(元),因而 Fourier展开就致收敛本节研究就般情形下Fourier级数的收敛性记1On() =++ cos a+cos 2a +.. cos na.利用1 - sin(k -sin(k +sin -rcoskr:23积们得到下面的等式On(2) = sin( + )rT≠2k元2 sina当=2k元时,规定an(r)=n+与,这进得到的。或部结函数,且" sin(n +)1+cosr+cos2+...+cosna)dr=222sina104
/ sin λx Z/L$. LE f $ Fourier _I ak → 0, bk → 0 (k → +∞). J, !$PI/ Fourier =, %?#8$:CUl$. 5M f CQ$JXp, %_ICQ$Fd. 5, ; f ∈ C 1 [−π, π], ) f(−π) = f(π), an = 1 π Z π −π f(x)cos nxdx = 1 π f(x) · 1 n sin nx π −π − 1 n Z π −π f 0 (x)sin nxdx = − 1 n · 1 π Z π −π f 0 (x)sin nxdx = o( 1 n ), (Riemann − Lebesgue) W , bn = o( 1 n ). {', ; f ∈ C k ([−π, π]), f (i) (−π) = f (i) (π), i ≤ k − 1, an = o( 1 nk ), bn = o( 1 nk ). §2 Fourier @K4JDQ Æ({t^|", 5M f ∈ C 2 [−π, π], f(−π) = f(π), f 0 (−π) = f 0 (+π), % Fourier _I+Fd an = o( 1 n2 ), bn = o( 1 n2 ), 1 Fourier {E. tvz{*oa Fourier cI$Ep. e σn(x) = 1 2 + cos x + cos 2x + · · · + cos nx. sin 1 2 x cos kx = 1 2 sin(k + 1 2 )x − sin(k − 1 2 )x ^#"a$%A σn(x) = sin(π + 1 2 )x 2sin 1 2 x , x 6= 2kπ. x = 2kπ =, L) σn(x) = n + 1 2 , x#"$ σ \ÆuPI, ) Z π 0 sin(n + 1 2 )x 2sin 1 2 x dx = Z π 0 ( 1 2 + cos x + cos 2x + · · · + cos nx)dx = π 2 . 4
sina7应用dr=2TJo首先,此积分是收敛的,我们可逼Cauchy其敛判断如下:设B>A,敛BsinrCOSTCOSB-dr-da+A22TJALArB dr11≤AB122+0,AI→ +8.AC+sindr敛记1=JAAsinEdrlimA-→+ar(n+)n sin alim-da2n-→+oJor" sin(n +)limdaT-rn-+J0CT11π-2Xlim) sin(n +Dada22sin2-T12(Riemann - Lebesgue)二其中,开为1lim(l2sin号-r=lim:0r-0a2sin号-02c·sin岁1做!ECo[0,元],从而可以应逼Riemann-Lebesgue看理2sinT设f的Fourier级数部分和为Sn(a),敛n号 +Z(ak cos ka + b sin kr)Sn(r)2K=1n1-1*72f(t)dt +f(t) coskt coskrdt +f(t) sin kt sin krdt2元Tmn广A1f(t)(cosktcoska+sinktsinka)dtL12元TK=11f(t)cos k(t - a)dt2+T元K-11f(r+u)on(u)du5
UV Z +∞ 0 sin x x dx = π 2 . Fb, ^8CE$, ^ Cauchy %".5a: ; B > A, Z B A sin x x dx = | − cos x x | B A + Z B A cos x x 2 dx| ≤ 1 A + 1 B + Z B A dx x 2 = 2 A → 0, A → +∞. e I = R +∞ 0 sin x x dx, I = lim A→+∞ Z A 0 sin x x dx = lim n→+∞ Z (n+ 1 2 )π 0 sin x x dx = lim n→+∞ Z π 0 sin(n + 1 2 )x x dx (x → (n + 1 2 )x) = π 2 + lim n→+∞ Z π 0 ( 1 x − 1 2sin x 2 ) · sin(n + 1 2 )xdx = π 2 . (Riemann − Lebesgue) %, \ lim x→0 ( 1 x − 1 2sin x 2 ) = lim x→0 2sin x 2 − x 2x · sin x 2 = 0, G 1 x − 1 2sin x 2 ∈ C 0 [0, π], 1} Riemann-Lebesgue . ; f $ Fourier cIÆ8R\ Sn(x), Sn(x) = a0 2 + Xn K=1 (ak cos kx + bk sin kx) = 1 2π Z π −π f(t)dt + 1 π Xn K=1 Z π −π f(t)cos kt cos kxdt + Z π −π f(t)sin ktsin kxdt = 1 π Z π −π f(t) " 1 2 + Xn K=1 (cos kt cos kx + sin ktsin kx) # dt = 1 π Z π −π f(t) " 1 2 + Xn K=1 cos k(t − x) # dt = 1 π Z π −π f(x + u)σn(u)du 5