第十一章度量空间与连续映射81内积与度量定义1(内积)设X是实数域R上的向量空间,如果映射g=(): X×X-R(a,y) - g(r,y) = (r,y)满足以下条件(1)(r,)≥0,且(c,2)=0台=0 (正定性)(2)(c,y)=(y,r),V,yEX (对称性)(3)(+μy,z)=(,z)+μ(y,z),,μR,,yX(双线性性)则称g=《,)为X上的一个内积,(X,《,》)称为内积空间,(r,y)称为与y的内积,l=,)称为的范数例1记R"=[(ci,.·,an)[ciER)为n元有序实数组,以显然的方式,R"成为R上的向量空间,称为n维欧氏空间.R"上有标准的内积《,):n(a,y)=ai-yi,Va=(ai,...,an), y=(yi,...,yn)eRn=1例2记Ca,可为闭区间[a,可]上连续函数的全体形成的向量空间.定义内积《,)如下:/f(r) - g(a)dr(f,g) =0定理1(Schwarz不等式)设(X,《,),)为内积空间,则K,y≤illllyll且等号成立当且仅当与y线性相关证明当=0(或y=0)时,由内积的线性知(0,y) = (0 . 0, y) = 0(0, 9) = 0.1
2?G )"E'=B1 §1 .D( @ 1(.) ! X )$,l R !MwmX, Cb g = h,i : X × X → R (x, y) 7→ g(x, y) = hx, yi [D8Z (1) hx, xi ≥ 0, hx, xi = 0 ⇔ x = 0 (u&R). (2) hx, yi = hy, xi, ∀x, y ∈ X (*R). (3) hλx + µy, zi = λhx, zi + µhy, zi, ∀λ, µ ∈ R, x, y ∈ X (-IRR) s g = h,i > X !Y< O, (X,h,i) > OmX, hx, yi > x j y ! O, kxk = p hx, xi > x !1,. % 1 U Rn = {(x1, · · · , xn)|xi ∈ R} > n meT$,, [F!2&, Rn > R !MwmX, > n ? *mX. R n e ! O h,i: hx, yi = Xn i=1 xi · yi , ∀ x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ R n . % 2 U C 0 [a, b] >X [a, b] uUE,!7Q!MwmX. &_ O h,i D: hf, gi = Z b a f(x) · g(x)dx. $ 1 (Schwarz 3) ! (X,h,i,) > OmX, s |hx, yi| ≤ kxk · kyk. "Ftd x j y IRJ@. H, x = 0(M y = 0) #, d O!IRw h0, yi = h0 · 0, yi = 0h0, yi = 0. 1
从而此时Schwarz不等式成立下设≠0,y≠0,则对vteR,有(r,r)-2t(c,y)+t2.(r,y)=(r-ty,a-ty)≥0→△=4(r,y)2-4(r,)(y,y)≤0(判别式)下面的证明略定义2(度量)设X为非零集合,如果映射p:X×X→R满足以下条件(1) p(r,y)≥0 且p(r,y) =0 台r=y;(2) p(r, y) = p(y, r);(3)p(,z)≤p(,)+p(y,2)(三角不等式则称p为X上的一个度量(或距离),(X,p)称为度量空间(或距离空间),p(c,y)称为y之间的距离例3(内全诱欧距时设(X,《,》)为内积空间,则令p(a,y)=r-yll,Va,yex显然p满足定义2中的(1),(2),而三角不等式也成立p2(,) = -=(-z,-z)= ((r-y)+(y -z),(r-y)+(y -z))= (r-y,a-y)+2(r-y,y-z)+(y-z,y-z)≤ (r-y,-y) +2-yl -ly-zll +(y-z,y-z)= (ll -yll + lly -zll)2 = (p(r,y) +p(y,z))?.因此p为X上的度量,称为由内积诱导的度量82度量设如的条扑本节假设(X,p)为度量空间.设EX,r>0,记B.(r) =(yEXIp(y,a)<r)称为以为中心,r为半径的开球2
-# Schwarz Æ"&t. D! x 6= 0, y 6= 0, s* ∀ t ∈ R, e hx, xi − 2thx, yi + t 2 · hx, yi = hx − ty, x − tyi ≥ 0 ⇒ ∆ = 4hx, yi 2 − 4hx, xihy, yi ≤ 0 (Æ&) D!v. @ 2 (() ! X >4{QI, Cb ρ : X × X → R [D8Z (1) ρ(x, y) ≥ 0 ρ(x, y) = 0 ⇔ x = y; (2) ρ(x, y) = ρ(y, x); (3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z). (]Æ"&) s ρ > X !Y<)w (Mgp), (X, ρ) >)wmX (MgpmX), ρ(x, y) > x, y xX!gp. % 3 (.C #) ! (X,h,i) > OmX, s} ρ(x, y) = kx − yk, ∀ x, y ∈ X. F ρ &_ 2 ! (1), (2), -]Æ"&Xt: ρ 2 (x, z) = kx − zk 2 = hx − z, x − zi = h(x − y) + (y − z),(x − y) + (y − z)i = hx − y, x − yi + 2hx − y, y − zi + hy − z, y − zi ≤ hx − y, x − yi + 2kx − yk · ky − zk + hy − z, y − zi = (kx − yk + ky − zk) 2 = (ρ(x, y) + ρ(y, z))2 . ` ρ > X !)w, >d Of!)w. §2 (!8/ _V! (X, ρ) >)wmX. ! x ∈ X, r > 0, U Br(x) = {y ∈ X | ρ(y, x) < r}, >[ x >P, r >e!i. 2
定义1(开集和闭集)设U为X的子集,如果EU,均>0,使得Be(r)CU,则称U为开集;约定空集也是开集如果一个集合的补集(余集)是开集,则称之为闭集显然,X为开集,从而の也是闭集含有的开集称为的开邻域例1开球为开集:设B,(ro),则p(,co)<r,令=r-p(,o)则当yEB(a)时,由三角不等式,有p(y, o)≤p(y,) p(, o)<p(, o)=这说明yEBr(o,即B()CBr(co)类似可证(yEX|d(y,ro)>r)为开集,其补集称为闭球,是闭集命题1(1)有限多个开集之交仍为开集:任意多个开集之并仍为开集(2)有限多个闭集之并仍为闭集:任意多个闭集之交仍为闭集证明(1)设Ui,,U为开集,VaEnUi,由定义,Fei>0,使得Be,(a)C=U,i=1,,k.令e=min[eili=1,,),则Be(a)cnU,故nU,为开集从开集的定义立即可以推出任意多个开集之并为开集(2)利用集合运算(AU...UA)=An...nA(NA)=UAY及(1)即可为了刻画闭集,我们引入极限的概念,它和实数列的极限概念是一致的定义2(极限)设[nJ-为X中点列,如果存在aoEX,使得>0.日N=N(e),当n≥N时,anEBe(ro),则称[n)收到极限ao,记为lim fn = c0.注(1)limn=20台limp(n,20)=0.(2)由三角不等式和(1)易见,极限如果存在,则必唯一命题2集合A为闭集当且仅当A中任何收敛点列的极限仍在A中3
@ 1 () ! U > X !Q, C ∀ x ∈ U, h ∃ ε > 0, % Bε(x) ⊂ U, s U >iQ; o&mQX)iQ. CY<QI! Q (iQ) ) iQ, sx>Q. F, X >iQ, - ∅ X)Q. De x !iQ> x !izl. % 1 i>iQ: ! x ∈ Br(x0), s ρ(x, x0) < r, } ε = r − ρ(x, x0), s y ∈ Bε(x) #, d]Æ"&, e ρ(y, x0) ≤ ρ(y, x) + ρ(x, x0) < ε + ρ(x, x0) = r, t. y ∈ Br(x0, S Bε(x) ⊂ Br(x0). o/kv {y ∈ X|d(y, x0) > r} >iQ, Q>, )Q. -5 1 (1) eH,<iQx\>iQ; ],<iQx>iQ; (2) eH,<Qx>Q; ],<Qx\>Q. H, (1) ! U1, · · · , Uk >iQ, ∀x ∈ T k i=1 Ui , d&_, ∃εi > 0, % Bεi (x) ⊂ Ui , i = 1, · · · , k. } ε = min{εi |i = 1, · · · , k}, s Bε(x) ⊂ T k i=1 Ui , > T k i=1 Ui >iQ, iQ!&_tSk[;],<iQx>iQ. (2) rcQIp1 (A1 ∪ · · · ∪ Ak) c = Ac 1 ∩ · · · ∩ Ac h ( T α Aα) c = S α Ac α R (1) Sk. >xlJQ, AaPH!9, 3G$,y!PH9)Y}!. @ 2 (:) ! {xn}∞ n=1 > X %y, Cr x0 ∈ X, % ∀ ε > 0, ∃ N = N(ε), n ≥ N #, xn ∈ Bε(x0), s {xn} +PH x0, U> limn→∞ xn = x0. J (1) limn→∞ xn = x0 ⇔ limn→∞ ρ(xn, x0) = 0. (2) d]Æ"&G (1) \Y, PHCr, s=Y. -5 2 QI A >Qd A H+v%y!PHr A . 3
证明设A为闭集,(an)CA,且limn=0.如果oA,则eo>0,使得Beo(ro)Ac,但lim an=o意味着,日N=N(eo)使得n≥N时EnEBeo(ro),这与anEA相矛盾因此CoEA.反之,如果A中任何收敛点列的极限仍在A中,则任取roA,考虑rn=n-1,如果Br,(ro)nA≠0,则取anEBrnA.从而an→o,这是矛盾因此3no>0使得Brn(o)CA,即Ac为开集,A为闭集83度量空间的完备性本节设(a,)为度量空间设[an)=1为X中点列如果e>0,日N=N(e),当n,m≥N时p(rm,rn)<8则称点列[an)为Cauchy列(或基本列)定义1(完备性)如果X中Cauchy列均为收敛点列,则称(X,)为完备度量空间注(1)收敛点列必为Cauchy列;(2)Cauchy列如果有收敛子列,本身也一定收敛(习题)命题1(Rn,·I)为完备度量空间证明设为R"中点列.把它写成分量形式In=(an,an,,an)则14()2/ = klIlc-l≤j=1因此,如果[rn]为Cauchy列,则J-对每个i=1,2,,n均为Cauchy列从而收敛设lim=o,则lim an = ro =(ro,ro,...,rn)设A为X中子集,称sup(p(r,y)lr,yEA)为A的直径记为diamA.直径有限的集合称为有界集合4
H, ! A >Q, {xn} ⊂ A, limn→∞ xn = x0. C x0 6∈ A, s ∃ ε0 > 0, % Bε0 (x0) ⊂ Ac , limn→∞ xn = x0 ]@, ∃ N = N(ε0) % n ≥ N # xn ∈ Bε0 (x0), tj xn ∈ A J+! ` x0 ∈ A. 0x, C A H+v%y!PHr A , s x0 6∈ A, j rn = n −1 , C Brn (x0) ∩ A 6= ∅, s xn ∈ Brn ∩ A. - xn → x0, t)+. `, ∃n0 > 0 % Brn0 (x0) ⊂ Ac , S Ac >iQ, A >Q. §3 (!9 ; _! (x, ρ) >)wmX. ! {xn}∞ n=1 > X %y. C ∀ ε > 0, ∃ N = N(ε), n, m ≥ N # ρ(xm, xn) < ε s%y {xn} > Cauchy y (MNy). @ 1 (9 ;) C X Cauchy yh>+v%y, s (X, ρ) >< )wmX. J (1) +v%y> Cauchy y; (2) Cauchy yCe+vy, "XY&+v (C6). -5 1 (R n , k · k) ><)wmX. H, ! {xn} > R n %y, 3O5wQ& xn = (x 1 n , x2 n , · · · , xn n ), s kx i k − x i l | ≤ Xn j=1 (x j k − x j i ) 2 1 2 = kxk − xlk `, C {xn} > Cauchy y, s {x i k }∞ k=1 *< i = 1, 2, · · · , n h> Cauchy y, -+v. ! limn→∞ x i k = x i 0 , s limn→∞ xn = x0 = (x 1 0 , x2 0 , · · · , xn 0 ). ! A > X Q, sup{ρ(x, y)|x, y ∈ A} > A !ye, U> diamA. ye eH!QI>eaQI. 4
下面设式理是R1中闭区也套原理设一般形式定理1设(X,p)为是量空也,则下列几条等价(1)(X,p)为完备是量空也(2)(Cantor)闭集套原理且这:若Fi)F2)·>Fn..·为一列非空闭集,且limdiamFn=0,则任在唯一设使aEnn=Fn.(3)闭球套原理且这:(2)中F换且直有(半有)趋于0设闭球时有相同结论证明(1)→(2):取anEFn,由FnFn+1)...知(an,an+1,..)cFn.因此, m>n时p(am,an)≤diamFn-→0(n→)然而[an)为Cauchy列,设其极限为a,则a=limamEFn,Vn≥1,即aenFn.如果另有benFn,则125p(a,b)≤diamFn → 0 (n - 00)然而a=b.(2)→(3):这是显然设(3)→(1).设an)为X中Cauchy列,为之证明这是一个收证使列,只须证明它包含一个收证子列即可由Cauchy列设式义,3ni<n2<,使得m,n≥nk时1p(am,an)< 2k+T考虑X中设闭球F=B2-(ank),k=1,2,·入EFn+1时p(r,an)≤p(r,ank+1)+p(ank+1,ank)1+1-1这说明aEFk.即FDFD.DFk>F+iD..另一方面diam F≤2 2-k→ 0, (k→ +),为任在aenFa然而有n=10≤p(a,ank)≤2-k→0(k→+80)5
D!&q) R 1 X4nq!YQ&. $ 1 ! (X, ρ) >)wmX, sDyT8"W: (1) (X, ρ) ><)wmX; (2) (Cantor) Q4nqt: F1 ⊃ F2 ⊃ · · · > Fn ⊃ · · · >Yy4m Q, lim n→+∞ diamFn = 0, sr=Y!% a ∈ T∞ n=1 Fn. (3) 4nqt: (2) Fi Kye (e) h 0 !#eJ:` . H, (1)⇒(2): an ∈ Fn, d Fn ⊃ Fn+1 ⊃ · · · w {an, an+1, · · · } ⊂ Fn. ` , m > n # ρ(am, an) ≤ diamFn → 0 (n → ∞) - {an} > Cauchy y, !PH> a, s a = limn→∞ am ∈ Fn, ∀n ≥ 1, S a ∈ T∞ n=1 Fn. C|e b ∈ T∞ n=1 Fn, s ρ(a, b) ≤ diamFn → 0 (n → ∞) - a = b. (2)⇒(3): t)F!. (3)⇒(1). ! {an} > X Cauchy y, >xvt)Y<+v%y, |S v3DY<+vySk. d Cauchy y!&_, ∃ n1 < n2 < · · · , % m, n ≥ nk # ρ(am, an) < 1 2 k+1 . j X ! Fk = B¯ 2−k (ank ), k = 1, 2, · · · . x ∈ Fn+1 #, ρ(x, ank ) ≤ ρ(x, ank+1 ) + ρ(ank+1 , ank ) ≤ 1 2 k+1 + 1 2 k+1 = 1 2 k t. x ∈ Fk. S F1 ⊃ F2 ⊃ · · · ⊃ Fk > Fk+1 ⊃ · · · . |Y2, diam Fk ≤ 2 · 2 −k → 0, (k → +∞), >r a ∈ T∞ n=1 Fk. -e 0 ≤ ρ(a, ank ) ≤ 2 −k → 0 (k → +∞) 5