SnSA的统计特性
SE, SA的统计特性
S=∑z ∑(X X=X 2 x(n1-1 由x2分布的可加性,有 x E ~x2(n1-1) j=1 J 即2~x2(n-s)(1.4) ESE=(n-s)o
2 E . 1 1 S ( ) s nj ij j j i X X = = = − 2 . 1 2 2 ( ) 1 nj ij j i j X X n = − − ~ ( ) 2 2 . E 1 2 2 2 1 1 ( ) S ~ ( ( 1)) nj s s ij j i j j j X X n = = = − − 由 分布的可加性,有 = E 2 2 S ~ ( ) (1.4) n s 即 − 2 ( ) ES n s E = −
03~x2(n-s),知:S的自由度为n-,并且有 E E[当2=n-s,即EFa2 n-S
E 2 2 E E E 2 2 S ~ ( ) S , S S [ ] , [ ] n s n s E n s E n s − − = − − ,知: 的自由度为 并且有 即 =
ESA=E∑n-nN21=∑nE(x.,)=nEX2 2n+)-m(n+n) =(-12+n2-m2 =(-172+∑n2+2∑n+∑n6 2-n =(-12+∑n82 δ=4-m--第个水平A的效应∑n6=0 n=n、即ES=(-12+∑n)2(15)
2 2 2 2 . 1 1 [ ] ( . ) S s A j j j j J j ES E n X nX n E X nEX = = = − = − 2 2 1 ( 1) (1.5) s A j j j ES s n = 即 = − + 2 2 2 2 1 ( ) ( ) s j j j j n n n n = = + − + 2 2 2 2 1 1 1 ( 1) 2 s s s j j j j j j j j s n n n n = = = = − + + + − 2 2 1 ( 1) s j j j s n = = − + 1 1 0 s j j j j j j s j j j A n n n = = = − = --第 个水平 的效应 = 2 2 2 1 ( 1) s j j j s n n = = − + −
S,=∑n(x-X)2 J=1 ESA=∑n162+(s-1)a2
2 . 1 ( ) S A j j J S n X X = = − 2 2 1 ( 1) s A j j j ES n s = = + −