-5.协方差的计算公式(2) Cov(X,Y) = E(XY) - E(X)E(Y):证明(1)Cov(X,Y) = E{[X - E(X)I[Y - E(Y)])= E[XY -YE(X)- XE(Y)+ E(X)E(Y))= E(XY) -2E(X)E(Y)+ E(X)E(Y)= E(XY)-E(X)E(Y)沈阳师范大学
5. 协方差的计算公式 (2) Cov(X,Y) = E(XY) − E(X )E(Y); 证明 (1)Cov(X,Y ) = E{[X − E(X)][Y − E(Y )]} = E[XY −YE(X) − XE(Y ) + E(X)E(Y )] = E(XY ) − E(X)E(Y ). = E(XY ) − 2E(X)E(Y ) + E(X)E(Y )
46.性质(1) Cov(X,Y) = Cov(Y,X);(2) Cov(aX,bY)= abCov(X,Y), a, b为常数:(3) Cov(X, + X2,Y) = Cov(Xi,Y) + Cov(X2,Y)沈阳师范大学
6. 性质 (1) Cov(X,Y ) = Cov(Y, X); (2) Cov(aX,bY ) = abCov(X,Y ), a, b 为常数; (3) Cov( , ) Cov( , ) Cov( , ). X1 + X2 Y = X1 Y + X2 Y
-(2) Cov(aX,bY) = abCov(X,Y), a, b 为常数;证明 Cov(aX,bY)= E(aX ·bY)-E(aX)E(bY)=abE(XY)-abE(X)E(Y)=ab|E(XY)- E(X)E(Y)= abCov(X,Y)沈阳师范大学
(2) Cov(aX,bY ) = abCov(X,Y ), a, b 为常数; 证明 Cov(aX,bY) = E(aX bY) − E(aX )E(bY) = abE(XY) − abE(X )E(Y ) = abE(XY) − E(X )E(Y ) = abCov(X,Y)