利用直接积分法求出的不定积分是很有限的 为了求出更多函数的不定积分,下面建立一些有效地积分法。 一、凑微分法
文件格式: PPT大小: 1.25MB页数: 45
导数在工程、技术、科研、国防、医学、环保和经济管理等许多领域都有十分广泛的应用.下面介绍导数(或微分)在经济中的一些简单的应用. 一、边际分析与弹性分析 边际和弹性是经济学中的两个重要概念.用导数来研 究经济变量的边际与弹性的方法,称之为边际分析与弹性分析 1边际函数
文件格式: PPT大小: 653KB页数: 26
利用函数的性态如函数的单调性、极值、凹性、 拐点、渐近线及基本性质如周期性、对称性等;再 利用描点(特殊选点)作图,就可比较准确地作出函数图 形.描绘函数图形的一般步骤是: (1)确定函数y=f(x)的定义域,讨论其周期性和对称性; (2)确定曲线的渐近线;
文件格式: PPT大小: 242.5KB页数: 7
一、原函数的定义 问题:若某一函数的导数为f(x),求这一个函数 设这函数为F(x),则 定义1设f(x)定义在区间上,若存在函数F(x),el,有 则称F(x)是已知函数f(x)在该区间上的一个原函数
文件格式: PPT大小: 444.5KB页数: 13
单调性是函数的重要性态之一,也是本章主要内容.它既决定着函数递增和递减的状况,又有助于我们研究函数的极值、证明某些不等式、分析描绘函数的图形等
文件格式: PPT大小: 469.5KB页数: 15
函数f(x)的单调性与极值是函数的重要性态如图: 曲线弧AB是单增的曲线但从A到C的曲线是向下弯 (或凸)的;从C到B的曲线是向上弯(或凹)的.显然,曲线 的弯曲方向和弯曲方向的转变点对我们研究函数的性 态是十分重要的.这就是下面讨论的凹性与拐点
文件格式: PPT大小: 441KB页数: 12
设函数y=f(x)在a,b)内图形如下图: y=f(x)/ 在:处的函数值()比它附近各点的函数值都要小 而在处的函数值()比它附近各点的函数值都要大; 但它们又不是整个定义区间上的最小、最大者,而且 A将这样的点称为极小值点、极大值点
文件格式: PPT大小: 943.5KB页数: 23
微分中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理 一.罗尔(Rolle)定理 定理1(罗尔定理)设函数f(x)满足下列条件: (1)在闭区间[a,b]上连续; (2)在开区间(a,b)上可导; (3)f(a)=f(b);
文件格式: PPT大小: 899.5KB页数: 34
在第二章中我们已经知道,\0”型的极限可能 存在,也可能不存在 sInd 例:求1.lim 则原式极限存在 x→>0x 2:imx-2x+1=→则原式极限不存在 +1 通常称不能直接使用极限的四则运算法则来计算 的极限,为未定式的极限 下面利用柯西中值定理来推出一种求未定式极限 的简便而有效的法则一罗必达法则
文件格式: PPT大小: 752KB页数: 18
函数y=f(x)的导数f(x)仍x是的函数.若(x)在 点x处仍可导,则称∫(x)在x处的导数为函数y=f(x) 在x处的二阶导数记为
文件格式: PPT大小: 150KB页数: 5
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权