在研究级数时,中心问题是判定级数的敛散 性,如果级数是收敛的,就可以对它进行某些 运算,并设法求出它的和或和的近似值但是除 了少数几个特殊的级数,在一般情况下,直接 考察级数的部分和是否有极限是很困难的,因 而直接由定义来判定级数的敛散性往往不可行 ,这就要借助一些间接的方法来判定级数的敛 散性,这些方法称为审敛法
文件格式: PPT大小: 0.99MB页数: 38
函数展开成幂级数 由于幂级数在收敛域内确定了一个和函 数,因此我们就有可能利用幂级数来表示函 数。如果一个函数已经表示为幂级数,那末 该函数的导数、积分等问题就迎刃而解
文件格式: PPT大小: 376.5KB页数: 25
习题课常数项级数审敛 一、主要内容 1、常数项级数 常数项级数收敛(发散) lim存在(不存在)
文件格式: PPT大小: 850.5KB页数: 29
前面两节我们讨论了一般项是非负整数次幂的 幂函数的函数项级级数,给出了幂级数 的收敛半径和收敛域的求法,讨论了函数展开为 幂级数的条件及函数展开为幂级数的直接展开法、 间接展开法
文件格式: PPT大小: 709.5KB页数: 42
其它展开 一、周期为2L的周期函数展开成 Fourier级数 前面我们所讨论的都是以2为周期的函数 展开成 Fourier级数,但在科技应用中所遇到的 周期函数大都是以T为周期,因此我们需要讨论 如何把周期为T=2l的函数展开为 Fourier级数 若f(t)是以T=2l为周期的函数,在[-l,l) 上满足 Dirichlet条件
文件格式: PPT大小: 565KB页数: 29










