一、函数极限的定义 二、函数的极限的性质
文件格式: PPT大小: 334KB页数: 16
定理4(函数极限与数列极限的关系) 如果当x→x时f(x)的极限存在,{xn}为f(x)的定义域内任一 收敛于x的数列,且满足xnx(nN+),那么相应的函数值数列 x)}必收敛,且
文件格式: PPT大小: 43.5KB页数: 1
如果在x的某一去心邻域内f(x)≥0(或f(x)≤0),而且 f(x)→A(x→x),那么A≥0(或A≤0) 证明设在x的某一去心邻域内f(x)≥0. 假设上述论断不成立,即设A<0,那么由函数极限的 局部保号性就有x的某一去心邻域,在该邻域内f(x)<0,这 与f(x)≥0的假定矛盾.所以A≥0
文件格式: PPT大小: 40KB页数: 1
定理3(函数极限的局部保号性) 如果f(x)→A(x→x),而且A>0(或A0(或f(x)0的情形证明
文件格式: PPT大小: 43KB页数: 1
定理2(函数极限的局部有界性) 如果f(x)→A(x→x),那么f(x)在x的某一去心邻域内 有界. 证明因为f(x)→A(x→x),所以对于=1,3δ>0, 当0
文件格式: PPT大小: 43.5KB页数: 1
一、数列极限的定义 二、收敛数列的性质
文件格式: PPT大小: 316KB页数: 19
定理3(收敛数列与其子数列间的关系) 如果数列{xn}收敛于a,那么它的任一子数列也收敛, 且极限也是a 证明设数列{xn}是数列{xn}的任一子数列. 因为数列{xn}收敛于a,所以ve>0,3nen+,当n>时, 有xn-ak. 取K=N,则当kK时,nK=N.于是xn-ak
文件格式: PPT大小: 43KB页数: 1
如果数列{xn}从某项起有xn≥0(或x0),且数列{xn}收 敛于a,那么a≥0(或as0)> 证明就x≥0情形证明 设数列{xn}从N项起,即当n>N时有xn≥0.现在用反 证法证明
文件格式: PPT大小: 40KB页数: 1
定理3(收敛数列的保号性) 如果数列{xn}收敛于a,且a>0(或aN时,有xn>0(或x0的情形证明. 由数列极限的定义,对ε=>0,3NN,当n>N时,有
文件格式: PPT大小: 42KB页数: 1
定理2(收敛数列的有界性) 如果数列{xn}收敛,那么数列{xn}一定有界 证明设数列{xn}收敛于a 根据数列极限的定义,Vε=1,3N∈N+,当n>N时,有
文件格式: PPT大小: 41.5KB页数: 1
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权