集合是现代数学各分支的共同基础,当 然也是本书的基础,读者应熟练地掌握 本章的全部内容,本章的一些内容,如 集合的并、交、Venn图等已在中学及大 学的其他课程中学习过,但为了内容的 完整及这些内容基础地位,我们没有省 略这些内容
文件格式: PPT大小: 59KB页数: 7
一、主要内容 二重积分的计算方法是累次积分法,化二重 积分为累次积分的步骤是: ①作出积分区域的草图 ②选择适当的坐标系 ③选定积分次序,定出积分限
文件格式: PPT大小: 567KB页数: 27
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
文件格式: PPT大小: 569.5KB页数: 30
一、在柱坐标系下的计算法 设M(x,y,z为空间内一点,并设点M在xoy面上的投影P的极坐标为r,0,则这样的三个数r,0,z就叫点M的柱面坐标
文件格式: PPT大小: 445KB页数: 26
三重积分及其计算 三、三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义
文件格式: PPT大小: 579KB页数: 25
二重积分的概念和性质 在一元函数积分学中,我们已经知道,定积 分是定义在某一区间上的一元函数的某种特定形 式的和式的极限,由于科学技术和生产实践的发 展,需要计算空间形体的体积、曲面的面积、空 间物体的质量、重心、转动惯量等,定积分已经 不能解决这类问题,另一方面,从数学逻辑思维 的规律出发,必然会考虑定积分概念的推广,从 而提出了多元函数的积分学问题
文件格式: PPT大小: 747.5KB页数: 29
从18世纪以来,无穷级数就被认为是微积分的 个不可缺少的部分,是高等数学的重要内容,同 时也是有力的数学工具,在表示函数、研究函数性 质等方面有巨大作用,在自然科学和工程技术领域 有着广泛的应用 本章主要内容包括常数项级数和两类重要的函 数项级数幂级数和三角级数,主要围绕三个问 题展开讨论:①级数的收敛性判定问题,②把已知 函数表示成级数问题,③级数求和问题
文件格式: PPT大小: 501KB页数: 33
幂级数 一、函数项级数的一般概念 1.定义: 设u1(x),2(x),n(),…是定义在ICR上的函数,则n(x=(x)+(x)+…+(+…
文件格式: PPT大小: 694.5KB页数: 33










