第二章s1n阶行列式的定义一、二阶行列式的定义二、三阶行列式的定义三、n阶行列式的定义加油!
§1 n阶行列式的定义 第二章 一、二阶行列式的定义 二、三阶行列式的定义 三、n阶行列式的定义
二元一次线性方程组求解(1)aiiXi + a12xX2 = br,(2)a21Xi + a22X2 = b2.用高斯消元法求其解:_ (1) ×a22a1a22X + 12a22x2 = b,a222←← (2)×ali2a21a12Xi +a22a12x2 =b,a12?(aa22 a12a21) Xj = b,a22 -b,a12加油!
. , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b 1 2 22 (1) a 12 ) (2) a 11 22 12 21 1 1 22 2 12 (a a a a x b a b a ) 用高斯消元法求其解: 21 12 1 22 12 2 2 12 a a x a a x b a 11 22 1 12 22 2 1 22 a a x a a x b a 二元一次线性方程组求解
(1)a11Xi + a12X2 = b1(2)a21Xi +a22Xz =b2.a2ialx +a22aiix2 = b,a1 (2)×al1← (1)×a21a,a21x; + ai2a21X, = b,a21(aa22 aiza21) X, = b,a -b,a21加油!
. , 21 1 22 2 2 11 1 12 2 1 a x a x b a x a x b 1 2 11 22 12 21 2 2 11 1 21 (a a a a x b a b a ) 21 11 1 22 11 2 2 11 a a x a a x b a 11 (2) a 21 ) (1) a 11 21 1 12 21 2 1 21 a a x a a x b a
(aia22 -a12a21) X, = b,a22 -b,a12ax +aix = b,a21xj +a22x2 =b,(aa22 -ai2a21) X2 = b,al1 -ba21(a11α22 -12α21 ± 0)Ab,a22 -b,ai2xaia22 -a2α211222b,au -b,a21aα22 -ai2α21加油!
11 22 12 21 1 1 22 2 12 (a a a a x b a b a ) 11 22 12 21 2 2 11 1 21 (a a a a x b a b a ) 1 22 2 12 1 11 22 12 21 b a b a x a a a a 2 11 1 21 2 11 22 12 21 b a b a x a a a a 11 1 12 2 1 21 1 22 2 2 , . a x a x b a x a x b 11 12 21 22 a a A a a 1 12 1 2 22 b a A b a 11 1 2 21 2 a b A a b
二阶行列式定义由四个数排成二行二列(横排称行、竖排称列的数表aay2a21a22数[a1a22 - a12a2称为数表所确定的二阶行列式,记为aa12a21122加油!
由四个数排成二行二列(横排称行、竖排称列) 的数表 数 a a a a 11 22 12 21 称为数表所确定的 二阶行列式, 记为 11 12 21 22 a a a a 二阶行列式定义 11 12 21 22 a a a a