b 21 a2y-1b2a2/+1 nn 证: 设方程组(1)有解,即有一组数x1x2 满足方程组(1)。用x乘系数行列式,并利用行列 式性质3可得 12
n n j n n j n n j j n j j n j a a b a a a a b a a a a b a a D 1 , 1 , 1 2 1 2, 1 2 2, 1 2 1 1 1, 1 1 1, 1 1 − + − + − + = 证: 设方程组(1)有解,即有一组数 n x , x , , x 1 2 满足方程组(1)。用 乘系数行列式,并利用行列 式性质3可得 1 x n n n n n n a a a a a a a a a Dx 1 2 21 22 2 11 12 1 1 =
+ax a c1+x2C2|a21x1+a2x2a22…a2n r,tanx an? C,+x2c a1x1+a12X+…+a1nxna1 2 CI+x,cn lax +ax +.+ax an1x1+an2x2+…+anx,a 2 2 a
1 2 2 c + x c n n n n n n n a x a x a a a x a x a a a x a x a a 1 1 2 2 2 21 1 22 2 22 2 11 1 12 2 12 1 + + + 1 3 3 c + x c n n c + x c 1 n n n n n n n n n n n n n n a x a x a x a a a x a x a x a a a x a x a x a a 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 2 1 + + + + + + + + + 1 2 2 22 2 1 12 1 D b a a b a a b a a n n nn n n = =