4 Hermite矩阵特征值的变分特征 定义:设A∈CM为 Hermite矩阵x∈C,称 H R(x)= x≠0 H 为A的 Rayleigh商
返回 4 Hermite矩阵特征值的变分特征 定义: 设 AC nn 为Hermite矩 阵, xC,称 ( ) = x 0 x x x Ax R x H H 为A的Rayleigh商
定理1( Rayleigh-Rtz): 设A∈CM为 ermita矩阵,则 (1)anr xsx Axsmxx (vrec (2)Amax =n1= max r(x)=max x Ax x≠0 H (3)amin =an=min R(x)=min x Ax x≠0 H
返回 定理1(Rayleigh-Ritz): 设 AC nn 为Hermite矩阵,则 (1) ( ) 1 H H H n n x x x Ax x x x C R x x Ax H x x x H 0 1 (2) max 1 max ( ) max = = = = R x x Ax H x x x n H 0 1 (3) min min ( ) min = = = =
证:A为 Hermite矩阵→ A=UMU,A=dig(1,A2,…)Vx∈Cn x ax =x U AUx =(Ux)"A(Ux) J=Ux Ax =∑1|y i=1 →x"4x≥m.∑ly}=mny"y=mx"x →x" Ax<a∑|J2=1myy= H max min·x"xsx"Ax≤λmx:x"x
返回 证: A为Hermite矩阵 1 2 , ( , , ) H A U U diag = = n n xC x Ax H H H = x U Ux ( ) ( ) H = Ux Ux 2 1 | | n H i i i x Ax y = = 2 min 1 | | n H i i x Ax y = y Ux = min H = y y min H = x x 2 max 1 | | n H i i x Ax y = max H = y y max H = x x x x x Ax x x H H H min max
定理2( Courant- Fischer):设A∈CN"为 Hermite 矩阵特征值为≤2≤…≤4k为给定的正 整数,1≤k≤n,则 mn max R()=nk n 01b n-k ∈ x≠0,x∈Cn x⊥a1,02.…On-k max min R()=nk ①1,02,…,Ok-1x≠0,x∈Cn x⊥a1 k-1
返回 k x C x x C R x n k n n n k = − − ⊥ min max ( ) , , 0, 1, 2, 1, 2, 定理2(Courant -Fischer):设 为Hermite n n A C 矩阵, 特征值为1 2 n ,k为给定的正 整数,1 k n,则 k x x x C R x k n k = − − ⊥ max min ( ) 1, 2, 1 1, 2, 1 , 0, ,
证:A为 Hermite矩阵 A=U AU, A=diag(n, n2,"An) xHAx (Ux)A(Ux R(x)=rHx (Ux)(Ux)
返回 证: A为Hermite矩阵 1 2 , ( , , ) H A U U diag = = n x x x Ax R x H H ( ) = ( ) ( ) ( ) ( ) H H Ux Ux Ux Ux =