20kN/m 100kN 20kN B F -106.7 106.7 130 21.34+-42.68-64.0286.7433 -128.0 640-640 86.7-86.7 40 128 86.7 64 40 73.3 F1n×8 75.35 F=37.7 kN.m
8m 4m 4m 4m 4m 2m A B E C F D G 20kN/m 100kN 20kN 杆件相对线刚度 i EI AB = 8 i EI BE = 4 i EI EC = 4 i EI CD = 8 杆端分配系数 BA = 2 5 BE = 3 5 CE = 2 3 CD = 1 3 固端弯矩 M M ql AB = − BA = − 2 12 = − = − 20 8 12 106 7 2 . kN.m M Pl m CD = − + 3 16 2 = − + = − 3 100 8 16 20 130 kN.m MDC = 20 2 = 40 kN.m 2 3 1 3 3 5 2 5 -106.7 106.7 -130 40 -21.34 -42.68 -64.02 -128.0 64.0 -64.0 86.7 43.3 86.7 -86.7 40 128 64 86.7 73.3 40 7535 8 4 1 . = F P F1P = 37.7 kN.m
3)用力矩分配法计算V时的弯矩图 Δ1钢,梁端固端弯矩 BE -3i Mo=343 -0.75 0.75 0.15 0.30.45 0.5-0.25 0.15 0.3-03 0.25-0.25 0.3i 0.25 k1×8 0275i= k1=0.1375 II 4
(3)用力矩分配法计算 时的弯矩图 1 = 1 1 = 时,梁端固端弯矩 1 : M i l i BE = −3 = − 3 4 M i l i CE = 3 = 3 4 2 3 1 3 3 5 2 5 -0.75 0.75 0.15 0.3 0.45 0.15 0.3 -0.3 -0.5 -0.25 0.25 -0.25 0.15i 0.3i 0.25i 0 275 8 4 11 . i k = k i 11 = 0.1375
(4)代入典型方程得 2742 0.1375i1+37.7=0 (5)求作连续梁弯矩图M=△1M1+Mp 128 867 64 0 0.3 73.3 0.25i 0.15i 169.1 18.3 E F 160 18.3 70.9
A B E C F D G (4)代入典型方程得 0.1375i1 + 37.7 = 0 1 274 2 = − . i (5)求作连续梁弯矩图 M = 1 M1 + MP 169.1 18.3 18.3 40 170.9 160 128 64 86.7 73.3 40 0.15i 0.3i 0.25i