第二章数列极限 §1实数系的连续性 实数系 实数集合R的重要的基本性质——连续性
第二章 数列极限 §1 实数系的连续性 实数系 实数集合 R 的重要的基本性质——连续性
第二章数列极限 §1实数系的连续性 实数系 实数集合R的重要的基本性质——连续性。 数系的扩充历史 自然数集合N:关于加法与乘法运算是封闭的,但是N关于 减法运算并不封闭。 整数集合Z:关于加法、减法和乘法都封闭了,但是Z关于 除法是不封闭的。整数集合Z具有“离散性
第二章 数列极限 数系的扩充历史 自然数集合 N :关于加法与乘法运算是封闭的,但是 N 关于 减法运算并不封闭。 整数集合 Z:关于加法、减法和乘法都封闭了,但是 Z 关于 除法是不封闭的。整数集合 Z具有“离散性”。 §1 实数系的连续性 实数系 实数集合 R 的重要的基本性质——连续性
有理数集合Q={x1x=9,peN,q∈Z}。关于加法、减法、乘 法与除法四则运算都是封闭的。有理数集合Q具有“稠密性
有理数集合Q ⎭⎬⎫ ⎩⎨⎧ ∈∈== + qp ZN pq xx ,,| 。关于加法、减法、乘 法与除法四则运算都是封闭的。有理数集合Q具有“稠密性”。 c
有理数集合Q={x1x=9,p∈N,q∈Z}关于加法、减法、乘法 与除法四则运算都是封闭的。有理数集合Q具有“稠密性” 虽然有理数集合是稠密的,但在坐标轴上留有“空隙”。例如 用c表示边长为1的正方形的对角线的长度,这个c就无法用有理 数来表示。换言之,有理数集合对于开方运算是不封闭的。因此 有必要将有理数集合加以扩充。 图2.1.1
虽然有理数集合是稠密的,但在坐标轴上留有 “空隙 ”。例如 用 c表示边长为 1的正方形的对角线的长度,这个 c就无法用有理 数来表示。换言之,有理数集合对于开方运算是不封闭的。因 此 有必要将有理数集合加以扩充。 -3 -2 -1 0 1 c 2 3 图2.1.1 有理数集合 Q ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ∈∈== + qp ZN p q xx ,,| 关于加法、减法、乘 法 与除法四则运算都是封闭的。有理数集合 Q具有“稠密性
有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R={xx是有理数或无理数}
有理数能表示成有限小数或无限循环小数,所以扩充有理数 集合 Q最直接的方式,就是把所有的无限不循环小数(称为无理 数)吸纳进来。全体有理数和全体无理数所构成的集合称为实数集 R : R ={ xx 是有理数或无理数}