2.1一阶偏导数与(全)微分(主要以二、三元函数为例)31易知D是非凸域,f(r.y)的一阶偏导数均在D上有界,但(T,y)在D上不一致连续.(3)令A=max(g(X):lxll=1)B=max(M,A),并对>0,取X,=(r,,y,)ER(i=1,2.,m):X,=1(i=1,2,,m),使得对于满足XI=1的X=(r,y)ER2,必存在X,:IlX-X,Ile/3B.根据(i),(i),还可选>0,使得当0t时有f(tr,.ty,)-f(0,0)-g(tri,ty,)/<at/3(i=1,2,,m).从而当X<时,对某个i可知X/XI-X<e/3B,X-XX,<XIE/3B,If(X)-f(XX,)I<MIXIle/3B≤Xe/3,If(lxlli,lxly,)-f(o,o)-g(Ixllx, y,)<lxle/3,Ig(X)-g(XX)=|g(X-XlX)-X-XX,g((X-XX)/X-X.X)≤IXIIsM/3B≤Xe/3.因此,我们有|f()一f(00)—g(,)|<号xl·3=xll例2.1.7试证明下列命题:(1)令D={(,):+y十<1),f(,,)在D上的偏导数存在,且有fi(,y,)≤l,/f(,,) /≤ ((y,)D)若对取定的点(,y):2+y<1,f(r,y,z)是的连续函数,则fEC(D)(2)令D=(I,y):+y<1).fEC(D)且有偏导数.若If(ry)≤1((r,y)ED),则存在(To.yo)ED,使得af(zoyo)(af(ao,y))≤16aray证明(1)设(ro,,z)ED,且Ar,AyA充分小,则If(ro+Ay+Ay,z+)f(royoz)1≤lf(o+r,y+Ay,z+A)-f(zo,y+Ayz+A)+lf(xo,+Ay2+A)-f(ro,yo2+A)1+(+)f(2)≤f(A+Ayz+A)A/+f(o,yAyz+)A+f(+f(2)≤/ArI+/Ay+f(ro,20+)-f(o,yo,2) 1.由此以及依据题设即得所证(2)作F()=f(r,y)+2(+)((,)ED),则F(0,0)≤1,且F(,)≥1(2+y2=1).从而可知存在点(z,):+<1,使得F(ro)达到最大(小)
.32.第2章多元函数微分学值.由此得F(ro,)=0=F(r。,y).从而导出f'(ro)=-4xo,f(ao.yo)=-4yo.因此我们有af(ro.yo))af(xo-yo)=16(+%)≤16.aray例2.1.8试证明下列命题:(1)设定义在区域D上的f(r,y)满足f(r,)=0,df(r,y)=0,(r,y)ED,ar1则f(r,y)=C(常数),(r,y)ED.注设f(y)定义在区域D上若f(r.y)一0((r.y)ED).则对任一点X=xo.)ED,存在邻域UX),使得fry)=F(r)(y)EU(X..o).但此结论不能推广到整个D上例如令,1>o.y>0,D=R((r,y):r≥o.y=o),f(r,y)(r.y) ED.其它,则EC(D)且有连续二阶偏导数.然而我们有f,(ry)=0.(r,y)ED;f(1,1)=1f(1,-)=0.J,>0且y≥0.又例如D=()0.≥0()(r.y)ED.则0.其它,fi(y)=0,(y)ED但f与有关(2)设f(r,y),g(r,y)在区域D上存在偏导数.若有afag.af-ag.f(r,y)+g(r,y)=1 ((r,y)ED),arayayar则f(a,y).g(a,y)在D上皆为常数证明(1)对D中任意两点X。=(To,y),X=(r,y),则有位于D内的以X,X为端点连续折线,不妨设为D中有点组:Xi,X2,,X.--1,X,=X:X.X..XX2,*"-,X.-X C D对于线段XX(X(xi,y)),应用中值公式可知f(X)-f(X,) =f(TIy) --f(aoy)=f(()+f(+(-,+o-)(-%)=0.由此导出f(X。)一f(X).类似地可推f(X)=f(X2)=...二f(X).这说明f(xo,yo)=f(r,y).证毕(2)只需指出g=0=g,f=0=f((x,y)ED).由于f(r,y)十g(x,y)=1,故对x,y求偏导可得f(a.y)f(r,y)+g(r,y)gi(x,y)=o
2.1一阶偏导数与(全)微分(主要以二、三元函数为例)·33f(r,y)f,(r,y)+g(r,y)gs(r,y)=o.即f(r,y)f(r.y)=-g(.y)g(r.y),f(ry)f(a,y)=-g(r,y)g,(ry).再根据f(r,y)=g(r,y),f(r,y)=一g(x,y)((r,y)ED),又可知f(t,y)g,(r,y)=-g(i,y)g,(r,y),f(r.y)g(a.y)=g(r,y)g,(r,y),从而导出((r,y)ED)f(x,y)+g(ry)lg,(r,y)=0,[f(r,y)+g(r,y)lgi(x,y)=0这说明g,(y)=0=g,(r.y),,y)ED.类似地可推得f(r,y)=o=f(,y),(r,y)ED注设(,y)定义在区域D上,且f(r.)=0((,)ED).若对D中任意两点(,y),(y):y<有((r.y):y,<y<yicD,则f(a,y)=(r).实际上我们有(0<<1)f(2)-f()=f(o(yzy))(y2)=0.这说明f(ry)之值与y无关例2.1.9试论下列函数在指定点的可微性:e-1/+y,+y≥0,(0,0).(1)f(r,y)0,十2=0,4/3sin(y/),0,(2)f(r,y)=(T,y)ER.0,r=0,[(+)sin(1/(+)),+0,(0,0).(3)f(r,y)0,+y2=0,解(1)因为我们有f.(0,0)= lim f(z,0)-f(0,0)=limx-le-1/2=0,rf,(0.0)= limf(0,y)-f(0,0)2=limy-e-1/=0,y所以()-f(0,0)=e-/+)=V+a(),其中a(r,)=e-/+) / /+=e-/ /p→0 (p→0),p=V?+y.由此知f(r,y)在点(0,0)处可微(2)因为我们有43T1/3sin"cosx±0,af(r,y)2xNar0,1=0,y11/3cOsr0,af(r.y)ray0,x=0
34.第2章多元函数微分学且均在D=RV(O,y):yER)上连续,所以f(,y)在D上可微对点(O,y),因为其差商存在估计/f(h,k)-f(o,y)|=((|h1/3)=0(1)(h—→0),(h2 +k2)1/2所以f(工,y)在点(O,y)上可微(3)注意到在r2十y≠0时有2r1f(r,y)=2rsin(1/(2+y2))COS+yr+y2y1f,(ry)=2ysinCOSn1+y2r?+y+yr在十=0时,又有f(r,0)-f(0,0)2sin(1/)=0,f(0,0)=0.f(0,0)=limx若取=1/2Vn元,y=1/2Vn(nEN),则得limf(y)=lim-2n元从而知f(T,y)在点(0,0)处间断(类似地可推f(z,y)在点(0,0)处也间断),而且在任一邻域U。(8)上均无界、但是因为f(0,0)=0=f(0,0),所以导出f(,)-f(0,0)=(r"+y2)sin(1/(2+y))=pα(p),a(p)=psin(1/p)→0(pV+y→0).这说明f(r.y)在点(0,0)处可微例2.1.10试论下列函数在指定点处的可微性:Jy/V+y,+y+0(1) f(r.y)=(0,0).0,十-0(2)f(r,y)=ry,(0.0).解(1)由f(y)=y/+y≤/y/0(→0y-0)可知f(,y)在点(0,0)处连续.因为我们有f"(0,0) = lim f(r,0)-f(0.0)=limo=0,f,(0,0)=0,xPa所以得到(p=V+)f(r,y)-f(o,o)=ry/V+yz=pa(,y),a(,y)=ry/p.易知p0时有α(,y)+0故f(,)在点(00)不可微ry注意,由f(x,y)fy(r,y)Vr+y2)3r+yV+y2
2.1一阶偏导数与(全)微分(主要以二、三元函数为例)·35ya(+y0),可知f(,)≤3/2f()≤3/2.这说明f(,VG+)y)在点(0,0)的一个邻域上有有界偏导数(2)因为我们有(0.0)=0一f(0,0),所以导出f(r,y)-f(o.o)=p.a(ry)(a(r,y)=Vxy/pp=V+y).取n=1/n,y,=1/n,则α(1/n,1/n)n//2→+co(n-00).这说明f(r,y)在点(0.0)处不可微例2.1.11解答下列命题:(1)求函数(i)u=ar(a>0).(ii)u=ry的微分(2)求可微函数u=f(,y,z)在r=t,y=t,=t时对t的微分22设(3)1,lr+my+n=0,则a262C2dydrdzmz/c2mz/a2-ly/62.my/6212/c2-nz/a23y2222设之(4)i1=1,则62Ca十入十入O62-十入7(+)= 0.drdzdy解(1)(i)注意到lnu一ryzlna,故得= Ina(yedr+zrdy+ryde)= ry na(++u(dridyidzdu=ay2lnd:(ii)注意到lnu=yln+lny十rlnz,故得d=dy·In+dr+de·Iny+dy+deln+=de,u1((+Ind+(+Inz)dy+(+In)du=r'y(2)du=fidt+f2.2tdt+f3.3t2dt=(f+2tf2+3tf3)dt(3)对两式各求微分,可得+y+=0,ldr+mdy+nde=0.0262C从而可解出