.36.第2章多元函数微分学drdydzy/622/c22/c2x/a2x/a?J/6211nnmm由此即得所证(4)对两式各求微分,可得ydyrdr+ydy+ederdzdz=0,0622a2a2+^62十入+2-从而可解出rdrydy-入(62-)/622(62+入(c2+入)—(c2-a)/ca(c?+)(a2+)zde入(a2=62)/a262(a?+入)(2+a)或ydyrdazdza(a)()62(b2 +^)(c2a2)(c+(a2)若记此值为1/k,又知kr2r(62-c)(1kr2/(-=a2a+入dr0+a(a+)类似地可知y2K(y(c2α)(a°-b2)上(入(6262+入dydz入十因此我们有+yy2k工72+兰)式①左端=2(+)xla62例2.1.12试证明下列命题(1)设z=f(,y)可微,且f(,y)(ydr十rdy)是具有连续二阶偏导数的函数g(r.y)的全微分,则rf(a,y)=yf(r,y)(2)设y十+y-1=0,则有微分等式dydr=0(ry> 0).V-rVI-y(3)设(z+ay)dz+ydy是某可微函数的全微分,则α=2.(r+y)2证明(1)由题设易知g(r,y)=yf(,y),g,(r,y)=rf(r,y),从而又可得ag(r.y)ag(r.y)2=f(r.y)+f,(r,y).y=f(r,y)+f(r,y)r,drdyayar根据gy二g即可得证
2.1、一阶偏导数与(全)微分(主要以二、三元函数为例).37.(2)对原题式求微分,易知2ry2dr+2rydy+2dr+2ydy=0,r(1+y)dr+y(1+z)dy=0.?从原题式还可解得1-y1+,=11-V2-,=士一1+32+11+代人式①(注意y>0),我们有1-y(1+y)dr+(1+)dy=0V1-ydx+Vi-xdy=o(3)不妨设该可微函数为f(,),则按定义可得aza+ayax3ar(r+y)2,ay(r+y)2由此知ydy+g()=In/r+i++g(a)+y)21r+y从而又得2-1y1+2y+g(r)+g(r).arr+y(+y)2(r+y)2r+ay+2y联系到上面第一式,我们有+g(r),或(r)2(r+y)2r+ayr+2y(a-2)g(α)=(t+y)ey.(r+y)2(r+y)?这说明必须a2.例2.1.13试证明下列命题:(1)设f(r,y)在区域D上定义,X=(oy)ED.若存在f(ro,)又在邻域U(X.)上存在f(r,y),且f(a,y)在点(to,y)处连续,则f(r,y)在点(ro.Vo)处可微(2)设f(r,y)在原点的邻域U。()上定义,f(,y)在点(0,0)处连续,在U。)\(0.0))上可微.若有limf(r,)=0limf,(r,y),I.v)r.y)+(0.0则f(r,y)在点(0,0)处可微(3)设f(,y)=lr一ylg,),g(,y)在零点的邻域U。()上连续,且g(0,0)=0,则f(r,y)在点(0,0)处可微(4)设f(r,y)在点(0,0)处可微,且f(0,0)=0,又假定g(r,y)在点(0,0)处
第2章多元函数微分学.38.连续,则F(r,y)二f(r,y)g(,y)在点(o.o)处可微,且有d(fg)=fdg(在点(0,0)处).证明(1)不妨假定(ro十△r,y+Ay)EU(X,),我们有f(ro+Ar,y+Ay)-f(ro,yo)f(ro+Ar,y+Ay)-f(ro,y+Ay)+f(ao,y+Ay)-f(ro,)f(roy+AyAr+o(A)+f,(royAy+o(Ay)f(ro,Ar+ar+o(A)+f(oy)Ay+o(Ay)(△r→0,Ay→0),其中=f(f(0).再由≤≤Vr)+(Ay))可知limαA十o(△)+o(Ay)/=0.这说明f(,y)在点(,y)处可微(2)依题设知,对任给。>0.存在8>0,使得af(r.v)[af(z,y)/2E0V+8)axay从而应用中值定理与Cauchy-Schwarz公式,我们有laf(orOy)af(or.oy)If(r,)f(0,0)|aray(() +(22)+ +.aray(3)因为我们有f(x,0)-f(00)Irig(r,o)f(o,y)-f(o,0)Iy/ g(0,y)rJyy所以f"(00)0=f(0,0).注意到[f(ry)-f(o,o)]/Vr?+y=-ylg(r,y)/V?+y=r/ cosr-sint|g(rcos,rsino)/r≤2g(rcoso,rsing)(4)因为f(y)=f(00)△+f,(00)Ay+op)(p=+→0),所以我们有(F(0,0)=0,p0)AF=F(r,y)-F(o,o)=f(r,y)g(r,y)=fi(o0)g(r,y)Ar+f(o,0)g(r,y)Ay+g(r,y)o(p)=f(0,)g(0,0)Ar+f,(0,0)g(0,0)Ay+R(x,y);R(,y)=f(oo)g(,)-g(.o)Ar+f,(.0)g(,)-g(o0)JAy+g(x.y).o(o).注意到g(,y)在点(0,0)处的连续性可知R(,y)/p0(p0).这说明F(r,y)在点(0,0)处可微.从而立即可得F(r,y)在点(O,0)处的微分为dFl(0.0)=g(00)[f(00)Ax+f,(00)Ay)=gdfl(o0)
2.1一阶偏导数与(全)微分(主要以二、三元函数为例)·39例2.1.14试证明下列命题:(1)设u(r,y),ur,y)在R2上可微.若有au(r,y)aur,y)qu(r,y)a(r,y)((r.y)ER),arayayay则在变换r二rcoso,yrsino下,上述方程组可表示为auldarra0'raear(2)设=f(r,y)在区域GCR上可微,又假定=g(s,t),y=(s,t)在区域DCR?上可微,且(,y)EG((s,t)ED),则z=fLo(s,t),s,t)在D上可微证明(1)注意到r=十y,一arctan(y/)以及题设,我们有l(ro+yu')=1①(yvg-xua)I(ru'-yu')=l(yup+ro0).?以y乘式①,以乘式②,相加可知(+yu(y+)或u,=lr2类似地可推得第二式,(2)对D中任一点P。=(so,to),并记X。=(zoy)=(g(so,to),(so,to)),依题设知,我们有=f(y)f(ro)=f(oa+f(ro)Ay+ap,-0-→),Ar=p(s,t)-(5o,to)=p(o,to)s+(so,to)t+apal→0(p0),A=()o,o)=(soo)+Φ(oto)+α2paz→0p→0),p=VA)+(Ay),=VA)2+(t)2由此可导出A=f(to.yo)(so,to)+f(ro,yo)(so,to)JA+f(toy0)p'(so,to)+f(1o,yop(so,to)+ap+f'(ro,yoai0+f,(royazp.注意到(估计上式最后三项)TA+g+f(.0 +f(20 0a +f(0aP0()+()上g,(so0)+9;(5o 0)+ ,(s,to) /+(so,to) I+M
40:第2章多元函数微分学立即推知I-0(p-0).证毕例2.1.15试证明下列命题:(1)存在9:0≤0≤2元,使得4元=cos(元/2)十sin元(10)/2.若af(,)_f(,)(r,y)ER),则存在g(t)(te(2)设fEC(R2).若arayR'),使得f(ry)=g(r+y)((r,y)ER).(3)设f(,y)在R2上有连续的一阶偏导数.若有af(r.y)-af(r,y)f(x,0)>0 (rER),((r.y) ER),aray则f(,y)>0 ((1,y)ER2).(4)设u=vyz,=r,w=ay(r,y,>o).若三元可微函数f与F满足①f(u,U,w)=F(r,y,z),则uf'+uf+wfu=rF+yF,+&F"证明(1)作函数f(,y)一sin元r十cos元y,在中值公式f(r+h.y+k)-f(ry)=fs(en)h+f(s.n)k;==a+oh,n=y+ok中取=0=-1/2h=k=1/2,则可得(=0/2,n=-(1-0)/2)[sin(+h)+cos(y+)]-[sin+cosy][sin+cos(元·0)]-[sin(0·)+cos号](=2)2(cos元sinr))=(cos+sin元)2由此即得4/元一cOs(元0/2)十sin(元(1—?)/2)。(2)作变量替换u=r十y,并令h(u,y)=f(u-y,y),则得h(uy)=一fi(uy,y)+f(u-y.y)=o((u,y)ER).这说明h(u,y)与y无关,记为g(u)=g(r+y).(3)对于R2中两点(,y)与(十y,O),则在两点间的连接直线段上,根据中值定理可知,存在点(,n),使得[af(e,n)af(en)f(r,y)-f(r+y,o)=y= 0.axay由此依题设得到f(r.y)=f(r十y,0)=0.(4)式①的意思是说,f(u,u,)通过中间变量a,y,成为r,y,的函数时等于另一函数F(ay,2).这说明式①两端对ry,求偏导应相等.我们有fuu'+f'+fw'=F',【zf/2+yf/2w=F,fu+fu+fww,=F,,或3zfu/2u+xf/2w=Ffuu'+fo'+fu'=-F,yfa/2u+rf/20=F".由此立即解出rF+yF十zF=uf十uf十wfu