作者:月浩2011年9月 六、幂级数 1.求收敛半径、收敛区间、收敛域。 0-r (n+1)2 ,+02x-2-x-2 2nR6r-1)2 2 =g(2n+102n+2 4 所以收敛半径为R=2,收敛区间为(-1,3) 1-2时告2习1.经数发点,所型资装与收数区同司 4n+1)2 a,b>0 长程名r微之空治女微数》乐≥ n R-max(a.b) 3)2x 比值判别法,求得收敛域为[-1,1] m+rr 相式判法,求将收数提为为 2.求级数足2”收敛半径,已知至a”的收敛半径为r∈(0,+四). 0 n=0 解:取定)满足0<0<r.由于级数乞an0”绝对收敛,所以存在M>0,使得 Page 39 of 49
作者:闫浩 2011 年 9 月 Page 39 of 49 六、幂级数 1.求收敛半径、收敛区间、收敛域. (1) 2 2 1 ( !) ( 1) (2 )! n n n x n ¥ = å - ; 解: = + ®¥ ( ) ( ) lim 1 u x u x n n n 4 ( 1) (2 1)(2 2) ( 1) ( 1) lim ( 1) (2 )! ! ( 1) (2( 1))! ( 1)! lim 2 2 2 2 2 2 2( 1) 2 2 - = + + + - = - - + + ®¥ + ®¥ x n n n x x n n x n n n n n n , 所以收敛半径为 R = 2 ,收敛区间为(-1, 3) . | x -1|= 2时, 1 (2 1)(2 2) 4( 1) | | | | 2 1 > + + + = + n n n u u n n ,级数发散,所以收敛域与收敛区间相同. (2) 2 1 , 0 n n n n a b x a b n n ¥ = æ ö ç ÷ + > è ø å . 解:级数 1 n n n a x n ¥ = å 的收敛域为 ) 1 , 1 [ a a - ,级数å ¥ =1 2 n n n x n b 的收敛域为 ] 1 , 1 [ b b - .所以当a ³ b 时 级 数 的 收 敛 域 为 ) 1 , 1 [ a a - , 当 a < b 时 级 数 收 敛域为 ] 1 , 1 [ b b - . 收 敛 半 径 为 max( , ) 1 a b R = . (3) 2 1 2 n n n x ¥ - = å 比值判别法,求得收敛域为[-1,1] (4) 2 1 1 (1 )n n n x n ¥ = å + 根式判别法,求得收敛域为 1 1 ( , ) e e - . 2.求级数 n n n x n a å ¥ = ! 0 收敛半径, 已知 n n n åa x ¥ =0 的收敛半径为 r Î(0,+¥). 解:取定 0 x 满足 < x < r 0 0 .由于级数 n n n a x0 0 å ¥ = 绝对收敛,所以存在M > 0,使得
作者:闫浩2011年9月 anx6sM(付m) 任取x∈(-0,+o),因为 三微三各周兰各r防 0n! (-0,+0),故其收敛半径为+0。 性. 解:根据题设条件,函数∫(x)在(-1,1)内各阶导数都存在,且∫(O)=∫'(0)=0,所以当 n≥2时,有 从而领数三白绝对收致 4.把函数在指定点展开为幂级数。 )f)=6-5x- 12-5x 6=0: 解:fx)= 12-5x 6+1 (6+x1-)6+x1-x 68-rg2 6+x1+白 6 所以f)=∑-r(g°+x,xe(-l山. (2)fx)=sim2x,x0=0: 解:sm2x=1-c9s2,c0s2x=2(-m2x2 2 n=0 (2n)1 Page 40 of 49
作者:闫浩 2011 年 9 月 Page 40 of 49 ( ) 0 a x M n n n £ " . 任取 x Î (-¥,+¥) ,因为 n n n n n n x x n M x x n x a x n a ÷ ÷ ø ö ç ç è æ ! £ ÷ ÷ ø ö ç ç è æ ! = ! 0 0 0 1 1 , 且级数 å ÷ ÷ ø ö ç ç è æ ! ¥ =0 0 1 n n x x n 收敛,所以级数 n n n x n a å ! ¥ =0 绝对收敛.因此级数 n n n x n a å ! ¥ =0 的收敛域为 (-¥,+¥) ,故其收敛半径为+ ¥ . 3.已知å ¥ n=0 n n a x 的收敛半径为1,且 f (x) = 0 n n n a x ¥ = å , 0 a0 = a1 = ,判断å ¥ =2 ) 1 ( n n f 的敛散 性. 解:根据题设条件,函数 f (x) 在(-1, 1) 内各阶导数都存在,且 f (0) = f ¢(0) = 0,所以当 n ³ 2时,有 ) 1 ( 1 (0) 2 1 ) 1 ( 1 (0) 2 1 1 ) (0) (0) 1 ( 2 2 2 2 n o n f n o n f n f f n f = + ¢ + ¢¢ + = ¢¢ + , 从而级数 å ¥ =2 ) 1 ( n n f 绝对收敛. 4.把函数在指定点展开为幂级数. (1) 2 0 12 5 ( ) 0 6 5 x f x x x x - = = - - ; 解: x x x x x f x - + + = + - - = 1 1 6 6 (6 )(1 ) 12 5 ( ) , å ¥ = = - + = + 0 ) 6 ( 1) ( 6 1 1 6 6 n n x n x x , å ¥ = = 1- 0 1 n n x x , 所以 f (x) = å ¥ = - + 0 ) 1) 6 1 (( 1) ( n n n n x , xÎ(-1,1) . (2) ( ) sin , 0 0 2 f x = x x = ; 解: 2 1 cos2 sin 2 x x - = , å ¥ = = - 0 2 (2 )! 2 cos2 1 n n n n x x ( ) ( )
作者:月浩2011年9月 2x,2-22-12 (2mj2 (3)fx)=sin3x,。=0: 利用三倍角公式逆用符到simx=子snx-子in3x:间接展开即可 1 (4)f(x)=l 2+2x+x =-1 解2+2z+-1++1-2-yr+,xe-20. n 5.求函数片n在x=0处的Tay1or展开式 解:利用sin1在0点的Taylor展开式,并证明其收敛半径为o,因此在[0,x]内级数一致 高an+2n+*2a(<+m. 收敛,基项积分得a=乞 成四-含职9四- 2-1n+r, 活号空号=吃=-1水1 2品-2 所以 4 2x 7.求极限im1-x3足n2x”. x→1厂 =1 解:记S=龙n2xH,则s)=三m”·又 2=】 Page 41 of 49
作者:闫浩 2011 年 9 月 Page 41 of 49 所以 = - 2 1 sin 2 x å å ¥ = + ¥ = - = - 1 2 1 0 2 (2 )! 2 1 2 1 (2 )! 2 1 2 1 n n n n n n n x n x ( ) ( ) ( ) ( ) , xÎ(-¥,+¥). (3) 3 0 f (x) = = sin x x, 0; 利用三倍角公式逆用得到 3 3 1 sin sin sin 3 4 4 x = -x x ;间接展开即可 (4) 2 0 1 ( ) ln 1 2 2 f x x x x = = - + + . 解: å ¥ = + = - + + = - + + 1 2 2 2 ( 1) ln(1 ( 1) ) ( 1) 2 2 1 ln n n n n x x x x , xÎ[-2,0] . 5.求函数 dt t x t ò0 sin 在 x = 0 处的 Taylor 展开式 解:利用sin t 在 0 点的 Taylor 展开式,并证明其收敛半径为¥ ,因此在[0, x]内级数一致 收敛,逐项积分得 ò å ¥ = + + + - = 0 2 1 0 (2 1)!(2 1) ( 1) d sin n n n x x n n t t t (-¥ < x < +¥) . 6.求å ¥ =2 - 2 ( 1)2 1 n n n 的和. 解:设 å ¥ = - = 2 2 1 ( ) n n n x s x ,则只需求 ) 2 1 s( , å ¥ = + - - = 2 ) 1 1 1 1 ( 2 1 ( ) n n x n n s x , ( ) 1 1 1 0 1 2 1 1 2 å å å åò ¥ = - ¥ = ¥ = ¥ - = = = - = - n x n n n n n n n x x dx n x x n x x n x ln(1 ) 1 1 0 dt x x t x x = - - - = ò ,| x |<1. å å ¥ = ¥ = = 2 + 3 1 1 n n n n n x n x x , 所以 2 1 ( ) [ ln(1 )] [ ln(1 ) ] 2 2 2 x x s x x x x x = - - - - - - - ln(1 ) 2 1 4 2 2 x x x x - - + + = ,(0 < < | x | 1) . 从而 1 2 1 3 1 5 3 2 ( ) ln ln 2 2 4 4 2 8 4 s + = + = - . 7.求极限 å ¥ ® = - - 1 3 2 1 lim (1 ) n n x x n x . 解:记 = å ¥ = - 1 2 1 ( ) n n S x n x ,则 ¢ ÷ ø ö ç è æ = å ¥ =1 ( ) n n S x nx .又
作者:闫浩201年9月 0-∑nr”=m1-xS树 -的2 -来∫(O)的值 8.设)=1+ 解:为了求了m(O)的值,把)展成x的冪级数,由4,=(),则x∞的系数就是 l O,由此可求出了0)的值。 100 a=1+-42-+3-3-3-n+-r+ 2 2用 所以-灯+0- =0+3x+34x2++2n+10+2x+ +6+3x+分3-4+.+a+la+2r+) =1+4x+9x2+.+n2x-l+(n+12x"+. 令n=100则f@0=1012,所以m0)=10201-1001 100! 9.设a,a1,a2,.为等差数列,(a0≠0) 0求级数三a,r的做敛城。回求器的和S 解:(1)=+,会1所以及=1.当=出时,复致碳为 Page 42 of 49
作者:闫浩 2011 年 9 月 Page 42 of 49 , ( 1, 1) 1 ( 1) ( ) 2 1 1 1 1 Î - - = ¢ ÷ ø ö ç è æ - = ¢ ÷ ø ö ç è æ = å = å ¥ = ¥ = - x x x x x S x x nx x x x n n n n , 所以 , ( 1, 1) ( 1) 1 ( ) 3 Î - - + = - x x x S x ,因此 3 2 3 1 1 1 3 3 1 lim (1 ) lim (1 ) ( ) 1 lim (1 ) 2. (1 ) n x x n x x n x x xS x x x x x - - - ¥ ® ® = ® - = - + = - = - å 8.设 3 (1 ) 1 ( ) x x f x - + = ,求 (0) (100) f 的值. 解:为了求 (0) (100) f 的值,把 f (x) 展成 x 的幂级数,由 ! ( ) 0 ( ) n f x a n n = ,则 100 x 的系数就是 100! (0) (100) f ,由此可求出 (0) (100) f 的值. L L L - + - - - - - + - + + - - - = + - - + - n x n n x x x ( ) ! ( 3)( 3 1) ( 3 1) ( ) 2! ( 3)( 3 1) 1 ( 3)( ) (1 ) 1 2 3 L +L + = + + × + + × n x n n x x ! ( 2)! 2 1 2! 4! 2 1 1 3 2 所以 3 3 (1 ) (1 ) 1 x x x - + - ( 1)( 2) ) 2 1 3 4 2 1 (1 3 = + x + × × x 2 +L+ n + n + x n +L ( 1)( 2) ) 2 1 3 4 2 1 ( 3 + x + x 2 + × × x 3 +L+ n + n + x n+1 +L =1+ 4x + 9x 2 +L+ n 2 x n-1 + (n +1) 2 x n +L 令 n = 100 则 2 (100) (101) 100! (0) = f , 所以 (0) 10201 (100)! (100) f = × 9.设a0 , a1 , a2 ,L为等差数列,( 0) a0 ¹ (1) 求级数 å ¥ n=0 n n a x 的收敛域;(2) 求 å ¥ n=02 n n a 的和S . 解 :( 1 ) a a nd n = 0 + , lim 1 1 = + ®¥ n n n a a 所 以 R = 1 , 当 x = ±1 时,级数 成 为
作者:月浩2011年9月 三(”a。m4,≠0,因此发散,于是级数三a,的收敛域为(-山). 四三a,r"=三(a+ndr=三aor+d2mr”=S(+S,( s国-告s-豆m,设s,因-三m 6eh=新k=含r=-1,5闭a对 含r-s国合广0 在上式中令x=7得三2:=2a+2d=2a 10.设曲线x”+y°=1(>)在第一象限与坐标轴围成的面积为1(m),证明 (1)1m=2n0-Pyr2m-d: (2)∑1m)<4 证明:1)在1)=∫1-xr在中,令x=,则 1n)=2n0-)2-d (2)0s I(m)=2nf-fd=2nfd s2nf'(-P)Pd=2nf-yd ≤2h兴 注意区”=产<小,逐项球号为 豆ma州<:将x-代入试含是台国此 1 2m2票-号4 Page 43 of 49
作者:闫浩 2011 年 9 月 Page 43 of 49 n n n ( 1) a 0 å ± ¥ = lim ¹ 0 ®¥ n n a , 因此发散,于是级数 å ¥ n=0 n n a x 的收敛域为(-1,1) . (2) ( ) ( ) ( ) 1 2 0 0 0 0 0 0 a x a nd x a x d nx S x S x n n n n n n n n å n = å + = å + å = + ¥ = ¥ = ¥ = ¥ = x a S x - = 1 ( ) 0 1 , = å ¥ = - 1 1 2 ( ) n n S x xd nx ,设 = å ¥ = - 1 1 3 ( ) n n S x nx 1 1 1 ( ) 1 1 0 1 0 3 - - ò = å ò = å = ¥ = ¥ = - x S x dx nx dx x n n n x x n , 3 2 (1 ) 1 ( ) x S x - = å = + = ¥ = ( ) ( ) 1 2 0 a x S x S x n n n + - x a 1 0 2 (1 x) xd - 在上式中令 2 1 x = ,得 0 1 0 2 2 2 2 a d a a n n n å = + = ¥ = . 10.设曲线 1 ( 1) 1 1 x + y = n > n n 在第一象限与坐标轴围成的面积为 I(n) ,证明 (1) I n n t t dt n n ò - = - 1 0 2 2 1 ( ) 2 (1 ) ; (2)å ¥ = < 1 ( ) 4 n I n . 证明:(1)在 I n x dx n n ( ) (1 ) 1 0 1 ò = - 中,令 n x t 2 = ,则 I n n t t dt n 2n 1 1 0 2 ( ) 2 (1 ) - ò = - . (2)0 £ I n n t t dt n 2n 1 1 0 2 ( ) 2 (1 ) - ò = - n t t t t dt n 1 2 2n 2 1 0 2 2 (1 ) (1 ) - - = - - ò n t t dt n 1 2n 2 1 0 2 2 (1 ) - - ò £ - n t t dt 2 n 1 1 0 2 2 [(1 ) ] - ò = - 1 1 1 0 4 2 ) 4 1 2 ( - - £ = ò n n n n dt , 注意到 ( 1) 1 1 < - å = ¥ = x x x x n n ,逐项求导得 ( 1) (1 ) 1 2 1 1 < - å = ¥ = - x x nx n n ,将 4 1 x = 代入此式, 9 16 1 4 1 å = ¥ = - n n n ,因此 å å ¥ = ¥ = - £ = < 1 1 1 4 9 32 4 2 ( ) n n n n I n .