元素全为零的矩阵称为零矩阵,手,mxn 零或0.矩阵记作0 mxn-a-a12n-a21-a22-a2n-A:-=....-a-aml-am2mn一A称为矩阵A的负矩阵矩阵加法的运算规律(1)结合律:(A+B)+C=A+(B+C);(2)交换律:A+B=B+A;(4) A+(-A) =0.(3)A+0= A;
矩阵加法的运算规律: (2 ; )交换律:A B B A + = + (1 ( ); )结合律:( ) A B C A B C + + = + + (3) ; A O A + = (4 ( ) . )A A O + − = 元素全为零的矩阵称为零矩阵, 零 矩阵记作 或 . mn omn o 11 12 1 21 22 2 1 2 n n m m mn a a a a a a A a a a − − − − − − = − − − − ( ), ij = −a −A称为矩阵A的负矩阵
定义(减法)A-B=A+(-B)定义(数与矩阵相乘)数k与矩阵A=(a,)mxn的乘积记作kA,规定为kakar2kanka22kaznka21kA=..kakakam2mlmn
( ) , ij m n 数k A a kA 与矩阵 = 的乘积记作 规定为 11 12 1 21 22 2 1 2 . n n m m mn k k k k k k k k a a a a a a A a ak ka = 定义 (减法) A B A B − = + −( ). 定义 (数与矩阵相乘)
kaka2KInka22kaznka21kA =·ka,kakam2mlmn数乘矩阵的运算规律:设A,B为mXn矩阵,k,l为数(1)(k+) A= kA+lA;(2) k(A+ B) = kA+kB;(3)() A= k(IA)
设A,B 为m×n 矩阵,k,l 为数 数乘矩阵的运算规律: (3 . )(kl A k lA ) = ( ) (1 ; )(k l A kA lA + = + ) (2 ; )k A B kA kB ( + = + ) 11 12 1 21 22 2 1 2 n n m m mn a a a a a a A a a a k k k k k k k k k k =
要注意kA| + kA|,aa12ainkaznka21ka22k七kA......a.a.anln2nnkanka2kainka21ka22kaznk"|AkA|=.......·ka,kakam2mlmn
11 12 1 21 22 2 1 2 n n m m mn n a a a a a a k k k k k k k k k k A A a k a a = = 11 12 1 21 22 2 1 2 . . . n n n n nn a a a k k k a k a a A a kA a a = 要注意k A kA
3-22例2已知,B=A=51且A+2X=B,求X.解将A+2X=B两边加-A.A+2X-A=B-A=A-A+2X=B-A=2X=B-A=XB232SXB5N213-22h4122-2一2
2 , 2 A X B A A X A B A + = − + − = − 解 将 两边加 3 1 2 7 5 2 , 1 5 0 0 1 4 A B − − = = 已知 且A+2X = B,求X. 例2 1 1 7 5 2 3 1 2 ( ) 2 2 0 1 4 1 5 0 2 3 2 1 4 6 4 1 . 2 1 4 4 2 2 2 X B A − − = − = − − − = = − − − − 1 2 ( ). 2 = − = − X B A X B A − + = − A A X B A 2