例1设E(X)=4D(X)=o,求X=X二严的期望、方差. 解:(x)(。)=E(x-四-0 a-〔。]-月 =DX=1 ·.D(X)=E(x”)-[EX)]=1-02=1 X的标准化变量:x=X=4 推论:随机变量经过标准化后,期望和方差分别为0,1
2 例1 设E X D X ( ) ( ) = = , ,求 的期望、方差. X X − = 解: ( ) X E X E − = ( ) 1 E X = − = 0 ( ) 2 2 D X E X E X ( ) ( ) = − 2 X E − ( ) 2 2 1 E X = − 2 1 D X( ) 1 = = 推论: 随机变量经过标准化后,期望和方差分别为0,1. X X − X的标准化变量: = 2 E X( ) = 2 = − = 1 0 1
二、方差的性质 1.设C是常数,则D(C)=0 证明D(C)=E(C2)-[E(C)=C2-C2=0. 2.设X是一个随机变量,C是常数,则有 D(CX)=C'D(X),D(X+C)=D(X) 证明D(Cx)=E{[Cx-E(Cx} -CEX-E(X)=C'D(X) D(X+C)-EX+C-E(X+CEX-E(XD(X) →D(aX+b)=dD(X)
证明 2 2 D C E C E C ( ) ( ) [ ( )] = − 二、方差的性质 2 2 = − C C = 0. 2. 设X C 是一个随机变量, 是常数,则有 证明 D CX ( ) 2 2 = − C E X E X( ) 2 = C D X( ). 2 = − E CX E CX ( ) 1. ( ) 0 设C是常数,则D C = 2 + = D aX b a D X ( ) ( ) 2 D CX C D X ( ) ( ), = D X C D X ( ) ( ) + = 2 D X C E X C E X C ( ) ( ) + = + − + 2 = − = E X E X D X ( ) ( )
3.设X,Y是两个随机变量,则有 X,Y的协方差:COV(X,Y) D(X+Y)=D(X)+D(Y)+2EX-E(X)Y-E(Y) 特别地,当XY相互独立时,有D(X+Y)=D(X)+D(Y). 才证明:X1,X2,X相互独立,则 2y-交a2ogca 若x,Y独立,a,b是常数,则D(aX+bY)=D(X)+bD(Y) 4.D(X)=0的充要条件是P{X=E(X)}=1 证:(1)充分性:(=)若P{X=E(X)}=1. =PX2=E2X)}=1→E(X2)=E2(X) →D(X)=0. (2)必要性:(→)待证
D X Y D X D Y E X E X Y E Y ( ) ( ) ( ) 2 [ ( )][ ( )] + = + + − − D X Y D X D Y ( ) ( ) ( ). + = + 3. 设X Y, 是两个随机变量,则有 特别地,当X,Y相互独立时,有 1 2 , , , 推 证明: 广:若X X Xn相互独立,则 2 1 1 ( ). n n i i i i i i D C X C D X = = = 1 1 ( ), n n i i i i D X D X = = = 若X ,Y 独立,a , b 是常数, 则 2 2 D aX bY a D X b D Y ( ) ( ) ( ) + = + 4. 0 { ( )} 1 D X P X E X ( ) = = = 的充要条件是 证: (1)充分性:( ) 若 P X E X { ( )} 1. = = 2 2 = = P X E X { ( )} 1 2 2 = E X E X ( ) ( ) = D X( ) 0. (2)必要性: ( ) 待证. X Y X Y , COV( , ) 的协方差:
DXE-EX X 01 三、常见分布的方差 Px 1-p p 1.两点分布:X~(0,1)参数为p.E(X)=p 例2 →DX)=PI-p 2.Poiss0n分布:X~π(2),E(X)=元D(X)=元 例3 证PX=k=e,k=0,L2,>0 k! E(X)=E[X(X-1)+X]=E[X(X-1]+E(X) 含-哈4-心29*2 =2e.e2+1=22+:D(X)=E(X2)-[E(X)=2
三、常见分布的方差 1. ~ (0,1) . 两点分布:X p 参数为 例2 = − D X p p ( ) (1 ). X ~ ( ) ,E X ( )= { } , 0,1,2, , 0 ! k P X k e k k − = = = 2. Poisson分布: D X ( )= 例3 E X p ( )= 2 E X E ( )= X X ( − + 1) X ( ) 2 2 2 2 ! k k e k − − = = + − 2 = + 0 ( 1) ! k k k k e k − = = − + = − + E X X E X ( 1 ( ) ) 2 e e − = + 2 2 = − D X E X E X ( ) ( ) [ ( )] = 0 1 1 k X p p p − 证 2 2 D X E X E X ( ) ( ) [ ( )] = −