例2I'Vi- x? dx .计算解令x=sint(0≤x≤1),则dx= costdt元当x=0时,{=0;当x=1时,{=.于是1+cos2tI'Vi-xdx = [cost.costdtdt2JO元元sin2t22410
. 计算 . 1 2 0 1 x dx 1 2 2 0 0 1 x dx cost costdt 2 0 1 cos 2 2 t dt 1 sin 2 ( ) 2 2 2 0 t t 4 . 例2
若f(x)在[-a,al上连续,证明例3①f(x)为偶函数,则F", f(x)dx = 2f" f(x)dx ;②f(x)为奇函数,则["f(x)dx =0证 ", (x)dx = J°. f(x)dx+ J" (x)dx,在[f(x)dx中令x=-t
证 ( ) ( ) ( ) , 0 0 a a a a f x dx f x dx f x dx 在 0 ( ) a f x dx中令x t, 例3
f f(x)dx =- f° f(-t)dt =J" f(-t)dt,①f(x)为偶函数,则 f(-t)= f(t)" J(x)dx = f" (x)dx + f" f(x)dxJ°f(-t)dt +J f(t)dt =2f" f(t)dt;②f(x)为奇函数,则f(-t)=-f(t)" f(x)dx = J" f(x)dx + f" f(x)dx= 0
0 ( ) a f x dx 0 ( ) a f t dt ( ) , 0 a f t dt ① f ( x)为偶函数,则 f (t) f (t), a a a a f x dx f x dx f x dx 0 0 ( ) ( ) ( ) 2 ( ) ; 0 a f t dt ② f ( x)为奇函数,则 f (t) f (t), a a a a f x dx f x dx f x dx 0 0 ( ) ( ) ( ) 0. 0 ( ) a f t dt 0 ( ) a f t dt