sinα(x)sinxlimlim1 (α(x)→0).α(x)xx-0tan xtan 4xlim例2 求→?(x →0)x-→0x4x1sin xtan x解lim lim1x→0x-→>0xxcos xsin 3x求lim例3x-0x解 令=3x,则当×→0时,→0,所以sin 3xsin 3xsinu3limlim3lim=3×1=33xx-→>0u-→0x-→0xu
解 解 1 sin lim 0 = x x x 1 ( ) sin ( ) lim = x x a a (a(x)0) 例3 例2 求 0 tan lim x x x 0 0 tan sin 1 lim lim 1 cos x x x x x x x = = 求 . 0 sin 3 lim x x x 0 sin 3 lim x x x 0 sin 3 3lim x 3 x x = 0 sin 3lim u u u = = 31 = 3 tan 4 ?( 0) 4 x x x
sinaα(x)sinxlimlim1 (α(x)→0)2α(x)xx-01-cosx例4 求 limx2x-02sin24cos.x2lim解- limx2x2x-0x-→0xSin2xsin22limim2 x-→>02 x->0lX222
解 1 sin lim 0 = x x x 1 ( ) sin ( ) lim = x x a a (a(x)0) 例例24 求 2 0 1 cos lim x x x 2 0 1 cos lim x x x = 2 2 0 2 2 0 ) 2 ( 2 sin lim 2 1 2 2sin lim x x x x x x = 2 0 1 cos lim x x x = 2 2 0 2 2 0 ) 2 ( 2 sin lim 2 1 2 2sin lim x x x x x x = 2 0 1 cos lim x x x = 2 2 0 2 2 0 ) 2 ( 2 sin lim 2 1 2 2sin lim x x x x x x = 2 1 1 2 1 2 2 sin lim 2 1 2 2 0 = = = x x x 2 1 1 2 1 2 2 sin lim 2 1 2 2 0 = = = x x x
sinα(x)sinxlimlim11 (α(x)→0).α(x)xx-0sin 3x求 lim例5 x→0 tan 4xsin3x3xsin3x33xlim解limtan 4xx→0 tan 4x4x-04x4x
求 . 0 sin 3 lim x tan 4 x x 0 sin 3 3 3 lim tan 4 4 4 x x x x x x x = 0 sin 3 lim x tan 4 x x 解 3 4 = 例5 1 sin lim 0 = x x x 1 ( ) sin ( ) lim = x x a a (a(x)0)
sinα(x)sinxlimlim1 (α(x)→0).7α(x)xx-0arc sin x求 lim例6x-0x解令u=arcsinx,则x=sinu,当x→0时,u→0uarcsin xlim= limx-→0u-0 sinux
求 . 解 例6 1 sin lim 0 = x x x 1 ( ) sin ( ) lim = x x a a (a(x)0) 0 sin lim x arc x x 0 arcsin lim x x x 0 lim u sin u u = =1
数列收敛的判别准则准则Ⅱ(单调有界准则)不是充要条件单调有界数列必是收敛数列,提问:收敛的数列是否一定有界?是否一定单调?有界的数列是否一定收敛?注:·1.数列有界是数列收敛的(必要条件):(充分)条件.2.数列收敛是数列有界的3.数列单调是数列收敛的(非充分非必要)条件10
10 数列收敛的判别准则 准则Ⅱ(单调有界准则) 单调有界数列必是收敛数列. 注: •1.数列有界是数列收敛的(必要条件). •2.数列收敛是数列有界的(充分)条件. •3.数列单调是数列 收敛的(非充分非必要)条件. 提问: 收敛的数列是否一定有界?是否一定单调? 有界的数列是否一定收敛? 不是充要条件