第二章一极限微积分的直接基础
第二章 微积分的直接基础——极限
第一节数列极限主要内容:数列及数列极限的概念
第一节 数列极限 主要内容: 数列及数列极限的概念
早在两于多年前,人们从生活、生产实际中产生了和素的极限思想,公元前3世纪,我国的庄子就有“一尺之,日取其半,万世不竭”的名言.17世纪上半叶法国数学家笛卡儿(Descartes)创建解析几何之后,变量就进入了数学随之牛顿页(Newton、英国)和莱布尼茨(Leibniz、德国)集众多数学家之大成,各自独立地发明了微积分,被誉为数学史上划时代的单程碑.微积分诞生不久,便在许多学科中得到广泛应用,大大推动那个时代科学技术的发展和社会进步.经过长达两个世纪的自身理论不断完善的过程,才建立了极限理论.可见“极限”是微积分的基础
早在两千多年前,人们从生活、生产实际中产生了朴 素的极限思想,公元前3世纪,我国的庄子就有“一尺 之棰,日取其半,万世不竭”的名言.17世纪上半叶法国 数学家笛卡儿(Descartes)创建解析几何之后,变量就 进入了数学.随之牛顿(Newton、英国)和莱布尼茨 (Leibniz、德国)集众多数学家之大成,各自独立地发 明了微积分,被誉为数学史上划时代的里程碑.微积分诞 生不久,便在许多学科中得到广泛应用,大大推动那个 时代科学技术的发展和社会进步. 经过长达两个世纪的 自身理论不断完善的过程,才建立了极限理论.可见“极 限”是微积分的基础
阿基里斯追龟iiZenon,约一位古希腊学者芝诺公元前496一约前429)曾提出一个著名的“追龟”诡辩题。大家知道,乌龟素以动作迟缓著称,阿基里斯则是古希腊传说中的英雄和擅长跑步的神仙.芝诺断言:阿基里斯与龟赛跑,将永远追不上龟!
阿基里斯追龟 一位古希腊学者芝诺(Zenon,约 公元前496 — 约前429)曾提出一个著 名的“追龟”诡辩题。大家知道,乌龟 素以动作迟缓著称,阿基里斯则是古希 腊传说中的英雄和擅长跑步的神仙.芝 诺断言:阿基里斯与龟赛跑,将永远追 不上乌龟!
假定阿基单斯现在A处,乌角现在B处.为了赶上乌角,阿基单斯先跑到乌角的出发点B,当他到达B点时,龟已前进到B,点;当他到达B,点时,乌龟又已前进到B,点,如此等等。当阿基里斯到达乌龟前次到达过的地方,乌龟已又向前爬动了一段距离.因此,阿基里斯是永远追不上乌龟的!BABB1BuB2
A B B B1 假定阿基里斯现在A处,乌龟现在B处.为了赶上乌龟 ,阿基里斯先跑到乌龟的出发点B,当他到达B点时, 乌龟已前进到B1点;当他到达B1点时,乌龟又已前进到 B2点,如此等等。当阿基里斯到达乌龟前次到达过的地 方,乌龟已又向前爬动了一段距离.因此,阿基里斯是 永远追不上乌龟的! B1 B2