18 线性代数学习指导 x-2x-1x-2x-3 (3) 2x-22x-12x-22x-3 =5.r(x-1): 3x-33x-24r-53x-5 4x-35x-74x-3 a11.1 0. (4) a 0 100.a 一1 0.0 0 0 -1.0 0 (5) =x"十a1x"1+.+aw-ix+a 0 0.x -1 awa-la-2.a2x十a 证(1) ar十yay十bRa+br ay+bre az+br ar+by az+br ax+by ay+b ar ay+be az+brby ay+l az+hr +b az+br ar+by az ar+by ay+bz ar+by ay+b xay+加az y bz az+br =ay az+br ar z ax+by ay r by ay+l r ay z y之bx =ay az r+z r by Iz ax y Ix y bz x y x y z =a3y之x+y&x z x y x y z =(a+b)y zx. 之xv (2)证法一利用行列式性质降阶
第1章行列式 ·19· 111 11 1 a b c n-sn o b-a c-a n-urI a3 0b-a'b c3-a'c b-a c-a 1 1 b(6-a2)c(2-a2) =(b-a)(c-a)b(b+a)c(c+a)l =(b-a)(c-a)[2+ac-]=(a+b+c)(a-b)(a-c)(c-b) 证法二加边法,构造范德蒙德行列式,得 1111 11 a b c =(a-b)(a-c)(a-x)(b-c)(b-x)(c-x). a3622 上式左边的4阶行列式中,x2对应的代数余子式即为x的系数 1111 (-1)a b c. a bc 由上式右边得x的系数为 (a-b)(a-c)(b-c)a+(a-b)(a-c)(b-c)b+(a-b)(a-c)(b-c)c =-(a-b)(a-c)(c-b)(a+b+c). 所以 111 a b c=(a-b)(a-c)(c-b)(a+b+c). a36c3 r-2r-1x-2x-3 (3) 2x-22x-12x-22x-3 3x-33x-24x-53x-5 4x4x-35x-74x-3 |x-2x-1x-2 x-3 n-n x 3x-33x-24x-53x-5 4z4x-35x-74x-3 x-210 一1 0 -0 0 0 0 展开 3.x-31x-2 1x-2- 2 -3x-7-3 -3x-7 -3
·20· 线性代数学习指导 100 x1x-2-1 x-2-1 3x-7-6 =-x-7-6创 =5x(x-1) (4) a011.1 a011.11 a 10. 0 1a10.00 102.00=a1a2.an 01.0 100.0a an 00.1 to- 00.0 1 10.0 a n一r 1 01.0 1 00.1 -aa( (5)证法一把行列式的第n列乘以x加到第n一1列,再把第n一1列乘以x 加到第n一2列上,以此类推,.,把第2列乘以x加到第1列上,得 0 0 0 0 0 0 0 0 D= 0 -1 0 0 0 -1 am+am-x+.+a1x-1+x” . a:+air+r2
第1章行列式 ·21· -10. 0 0 0-1.0 按展开(-1)(a.十a-1x十.十a1十x): 00.-10 00.0 -1 =(-1)*(aw+a-1x+.十a1x+x)·(-1) =a,+ax十.+a1x+, 证法二将行列式按第1列展开,得 x-10.0 0 0 x -1.0 0 D.=x 0 0 0.x -1 aa-2aw-s.agx+a1 |-10.00 -10 +(-1)an o 00.x-1 =xD.1+(-1)a.·(-1)-1, 由递推公式,得 D=xD.1十aw=x(xD2十a-1)十a =xDm2十m-1十am =x2(zxD3十a2)十m-1十a =rD3+ra2+xa+a. =.=r2D2十x3as十.+a+an =a+a.r+.+ax+r2 -1 =a+a-x+.+a1x-1+x. x31 x+2y-4x-2 5.已知y0-2=1,求302 2-1-121 |x+2y-4x-2xyx2-4-2 3 02=302+30 2 -1 2 1 -121 -12
·22 线性代数学习指导 x y -121 x 3 1 3 02 -2 302= -2 -1 1-2-1 -121 22-1 8.已知 1213-5 D= 423 111 7492 求A1+A2十A十A 解由于A1十A2十Ag十2Aa=0,所以 A1十A2十AB十A4 213 112 =-A4= 423=-221 -/121 111 010 2- 9.计算下列行列式的值: 3 -1 (1) 2 (2) 0 一2 0 -2-4 536 3111 0 0 (3) 1311 (4) 0 0 1131 0x0 1113 0 00. 0 1 -1 1 x-1 0 0 100 (5) x+1 1 x-1 -1 (6)D. x+1 -1 1 -1 0 0 0 a 0 0 0 a 1+a . 1 . 1 (7)D. 1+a a1a2am≠0: 1+a