例9 求I csc xdx.解(一)「cscxdxdxxxsinx2sincOS221xdtan22xxxtantancos222x= Incscx-cot x|+C+ctan2csc xdx = In(csc x - cot x) + C经济数学微积分
例9 求 解(一) 1 d sin x x = csc d . x x csc dx x 1 2 2 2 d sin cos x x x = 2 1 2 2 2 d tan cos x x x = 1 2 2 d tan tan x x = C x = + 2 ln tan = ln csc x − cot x + C. csc d ln csc cot x x x x C = − + ( )
sinx解(二)I csc xdxdxdxsin xsinx1d(cos x)u=cosxxCoSdu1+u1-cosx+C.+CT1+u21+cosx(sec xdx = In sec x + tanx类似地可推出微积分经济数学
解(二) 1 d sin x x = csc dx x 2 sin d sin x x x = 2 1 1 d(cos ) cos x x = − − u = cos x 2 1 1 du u = − − 1 1 1 2 1 1 du u u = − + − + C u u + + − = 1 1 ln 2 1 . 1 cos 1 cos ln 2 1 C x x + + − = 类似地可推出 sec d ln sec tan x x x x C = + +
1dx例10求dx-arctan- +c22-8x+25.a011解dx:dxx?_8x+25+911d232.34+1+1331x-4+ C.-arctan33C经济数学微积分
例10 求 2 1 8 25 d . x x x − + 解 2 1 8 25 dx x x − + 2 1 4 9 d ( ) x x = − + 2 2 1 1 3 4 1 3 dx x = − + 2 1 1 4 3 3 4 1 3 d x x − = − + . 3 4 arctan 3 1 C x + − = 2 2 1 1 d arctan x a x c a x a = + +
[(1-xdx.例11求-Dex解x+x?rxdxexY+x+C(x -PX微积分经济数学
例11 求 1 2 1 ( ) d . 1 x x e x x + − 解 , 1 1 1 2 x x x = − + 1 2 1 ( ) d 1 x x e x x + − 1 1 d( ) x x e x x + = + . 1 e C x x = + +
1dx.例12 求2x+3+/2x-1/2x+3-/2x-1原式=dx/2x+3 + /2x-1)(/2x+3- /2x-1J/2x+3dx-→J/2x-1idxJ /2x +3d(2x + 3) -= [/2x -1d(2x -1)P(Vx+3)-(/2x-1)+C.华微积分经济数学
例12 求 1 2 3 2 1 d . x x x + + − 原式 ( )( ) 2 3 2 1 2 3 2 1 2 3 2 1 d x x x x x x x + − − = + + − + − − 1 1 2 3 2 1 4 4 = + − − x x x x d d 1 1 2 3 2 3 2 1 2 1 8 8 = + + − − − x x x x d( ) d( ) ( ) ( ) 1 1 3 3 2 3 2 1 . 12 12 = + − − + x x C