利用基本积分表的公式把被积函数中的一部分凑成中间变量的微分,常见的有:dx = =d(ax + b)ax"-ldx = -d(x"d(In / x D:Xnx1e*dx = d(e*)a"dx =d(a*)Inacos xdx = d(sin x)sin xdx = -d(cos x)sec xdx = d(tan x)csc2 xdx = -d(cot x)1dx = d(arcsin x) = -d(arccos x)V1-x?1dx = d(arctan x)= -d(arccotx)1+x微积分经济数学
利用基本积分表的公式把被积函数中的一部分凑成 中间变量的微分,常见的有: ( ) ( ) 1 2 2 2 2 1 d d 1 1 d d d d(ln | |); 1 d d( ) d d( ) ln cos d d(sin ) sin d d(cos ) sec d d(tan ) csc d d(cot ) 1 d d(arcsin ) d(arccos ) 1 1 d d(arctan ) d( cot ) 1 n n x x x x x ax b a x x x x x n x e x e a x a a x x x x x x x x x x x x x x x x x x arc x x − = + = = = = = = − = = − = = − − = = − +
例5 求 tan xdx和[cot xdx.sinx解『 tan xdx =dxcosx1d(cosx) = -ln cosx+Ccos xcosxcot xdx :dxsinx1d(sin x) = In sin x + C.sin xtan xdx = - In cos x|+ CIn|sin x + Ccotxdx =微积分经济数学
例5 求 tan d cot d . x x x x 和 sin tan d d cos 1 d(cos ) ln cos . cos x x x x x x x C x = = − = − + 解 cos cot d d sin 1 d(sin ) ln sin . sin x x x x x x x C x = = = + tan d ln cos cot d ln sin x x x C x x x C = − + = +
1例6 求2a+X1解dx2ddx1+xarctan= + C.aa1+a17arctan=+Ca经济数学微积分
例6 求 2 2 1 d . x a x + 解 2 2 1 dx a x + 2 2 2 1 1 1 dx a x a = + 2 1 1 1 d x a a x a = + arctan . 1 C a x a = + 2 2 1 1 d arctan x a x C a x a = + +
1dx.例7 求21解xx-xx北+C:arcsinaa1dx = arcsin x + CT经济数学微积分
例7 求 2 2 1 d . x a x − 解 2 2 1 d arcsin x a x C a x = + − 2 2 2 2 1 1 1 d d 1 1 d arcsin . 1 x x a x a x a x x C a a x a = − − = = + −
例8 求2解1-xa+xId(a -Y1a+x-(-In|a - x|+ In|a+ xl)+ c = +C2aa-x1+x+C2aX经济数学微积分
例8 求 2 2 1 d . x a x − 解 2 2 1 1 d ln 2 a x x C a x a a x + = + − − ( ) ( ) ( ) 2 2 1 1 1 1 d d 2 1 1 1 d d 2 1 1 ln ln ln . 2 2 x x a x a a x a x a x a x a a x a x a x a x a x c C a a a x = + − − + = − − + + − + + = − − + + + = + −