中国矿亚大医CHINAUNIVERSITY OFMININGAND TECHNOLOGYai1j+a12x2+...+ainn=bia211+a2272+..+a2nxn=b2例2解线性方程组[anij+an2X2+..+annin=bn≤算法l:Cramer法则D;,(i=1,2,,n), D=- E(-1)aj"2i?*·ninXi=D乘除法次数A,= n!(n-1)(n+1)+n如n=20,A。~9.7×102°假设计算机1秒钟进行1亿=108次乘除法,共需时:
CHINA UNIVERSITY OF MINING AND TECHNOLOGY ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ + + + = + + + = + + + = n n nn n n n n n n a x a x a x b a x a x a x b a x a x a x b " " " " " 1 1 2 2 21 1 22 2 2 2 11 1 12 2 1 1 例 2 解线性方程组 "算法1: Cramer法则 乘除法次数A n = , ( i 1 , 2 , , n), D D x i i = = " = ∑ − njn D a j a j " a 1 2 1 2 ( 1 ) τ n ! ( n − 1)( n + 1 ) + n 20 20 如n A = ≈× 20 9 7 10 ,., 假设计算机1秒钟进行 1亿=108 次乘除法,共需时:
中国矿亚大医CHINA UNIVERSITY OFMININGAND TECHNOLOGY9.7×1020(万年)~30t=710×60×60×24×365算法2:Gauss消去法乘除法次数:An=-nn33A20 = 3060耗时:t,=3×10-(秒)例3计算积分的梯形公式与Simpson公式:非线性方程求根,Newton法比二分法快
CHINA UNIVERSITY OF MINING AND TECHNOLOGY "算法2: Gauss消去法 乘除法次数: An n n n 3 1 3 1 3 2 = + − 3060 A20 = 耗时: t − = × 5 2 3 10 ( 秒 ) 例 3 计算积分的梯形公式与Simpson公式; 非线性方程求根,Newton法比二分法快。 . t × = × ××× 20 1 8 9 7 10 10 60 60 24 365 ≈ 30 (万年 )
中国矿亚大业CHINAUNIVERSITY OF MININGANDTECHNOLOGY2. 准例4求根x2-56x+1=0,假设计算机有尾数为5位,V783=27.98256±/783×4=28±V783算法一 Xi,2=2X,=28+V783=55.982第二个解的精确值为0.0178628X, = 28- V783 = 0.018算法二X,=28+V783=55.98211=0.017863X2=128+78355.9820
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 2. 准 例 4 求根 ,假设计算机有尾数为 5位, 2 x x − 56 1 0 + = 算法一 1 x =+ = 28 783 55.982 算法二 783 27.982 = 1,2 56 783 4 28 783 2 x ± × = =± 2 x =− = 28 783 0.018 1 x =+ = 28 783 55.982 2 1 1 0.017863 28 783 55.982 x = == + 第二个解的精确 值为0.0178628
中国矿亚大鉴CHINAUNIVERSITYOF MININGANDTECHNOLOGY例5(P1例1,P5例3)计算积分I(n)=e-'x"e*dx (n=0,1,2,..,9)直接积分I(0)=1-e-1解法一由分部积分法可得导 I(n)=1-nl(n-1)取初值I(0)=1-e-" = 0.6321≤ii, =1-ni.-则递推公式计算得1,=0.3679,,,=-0.7280,1,=7.552i
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 例 5 ( P1 例 1 ,P5 例 3)计算积分 1 1 0 ( ) ( 0,1, 2, , 9) n x I n e x e dx n − = = ∫ " 由分部积分法可得 I n nI n ( ) 1 ( 1) = − − 1 0 Ie I (0) 1 0.6321 − =− = 取初值 则递推公式 1 1 n n I nI − = − 计算得 1 89 I II = =− = 0.3679, , 0.7280, 7.552 " 1 I e (0) 1 − 解法一 直接积分 = −
中国矿亚大鉴CHINA UNIVERSITY OF MININGAND TECHNOLOGY算法1结果算法2结果精确值I(1)0.36790000.36787950.36787941(2)0.26420000.26424110.26424111(3)0.20740000.20727680.20727661( 4)0.17040000.17089290.17089341( 5)0.14800000.14553570.1455329I(6)0.11200000.12678570.1268024I(7)0.21600000.11250000.11238361( 8)-0.72800000.10000000.10093231(9)0.09161237.55200000.10000001(10)0.0000000-74.52000000.0838771
CHINA UNIVERSITY OF MINING AND TECHNOLOGY 算法 1结果 算法 2结果 精确值 I( 1) 0.3679000 0.3678795 0.3678794 I( 2) 0.2642000 0.2642411 0.2642411 I( 3) 0.2074000 0.2072768 0.2072766 I( 4) 0.1704000 0.1708929 0.1708934 I( 5) 0.1480000 0.1455357 0.1455329 I( 6) 0.1120000 0.1267857 0.1268024 I( 7) 0.2160000 0.1125000 0.1123836 I( 8) -0.7280000 0.1000000 0.1009323 I( 9) 7.5520000 0.1000000 0.0916123 I(10) -74.5200000 0.0000000 0.0838771