双边Z变换·z变换定义及收敛域·系统的稳定性和H(Z·Z反变换
•z变换定义及收敛域 •系统的稳定性和H(z) •Z反变换 双边z变换
z变换定义及收敛域8x[k]2-kX(2)= k=-00收敛域(ROC):R_<<R1)有限长序列N2-KZx[k]z-ROCX(z) =0<<8k=Ni0≤k≤N-1例: x[k] == R~[k]0其它Z-NN-1ZX(z) =>01-z-1k=0
z变换定义及收敛域 k k X z x k z − =− ( ) = [ ] 收敛域(ROC): R−< |z|<R+ 1)有限长序列 k N k N X z x k z − = ( ) = [ ] 2 1 ROC 0 < z < [ ] 0 1 0 1 [ ] R k k N x k = N − = 其它 例: 1 1 0 1 1 ( ) − − − − = − − = = z z X z z N k N k z 0
2)右边序列8Z-KX(z) =x[k]z[2| > R_k=N例: x[k]=α'u[k]81X(2)=Z a*z-k[ >al1-az-1k=0
2)右边序列 k k N X z x k z − = ( ) = [ ] 1 R− z x[k] a u[k] k 例: = 1 0 1 1 ( ) − − = − = = az X z a z k k k z a
3)左边序列N2KZx[k]z-X(z) =2|< Rk=-00例: x[k]=-b*u[-k-1]82b-k_k-b*z- =Z-b-kzkYX(z) ==1-7k=0k=1k=-0011[2 <[6]1 - bz -11- b-lz
3)左边序列 k N k X z x k z − =− ( ) = [ ] 2 x[k] = −b u[−k −1] 例: k 1 1 1 − − = bz z < b = − − − =− = − = − 1 1 ( ) k k k k k k X z b z b z = − = − 0 1 k k k b z b z 1 1 1 1 − − = − < R+ z
4)双边序列8x[k]z-kZX(z)=ROC R_<<Rk=-00例: x[k] =αu[k]-b*u[-k-1]11X(z)[a<2<b1 - bz-10.Z
4)双边序列 k k X z x k z − =− ( ) = [ ] − < < R+ ROC R z x[k] = a u[k]−b u[−k −1] 例: k k 1 1 1 1 1 1 ( ) − − − + − = az bz X z a < z < b