其切称量为(uo,vo)= (r(uo,vo),yu(uo,vo),zu(uo,vo)E%(uo, vo) = (r(uo,vo),y(uo,vo),z%(uo, vo)如果(uo,vo),%(uo,vo)线性无关,则n =E(uo,vo) xE%(uo,vo)=(yuz-zu-yu, zu-au-ru-zu, auy-yu-a)+0亢为法称量,推而的切平面方程为(P-E(uo, vo) ·n= 0或改程为-r(uo, vo) y-y(uo, vo) z-z(uo, vo)= 0.zt(uo, vo)ru(uo,vo)yu(uo, vo)z(u0, vo)c(uo, vo)z(uo,vo)例3求球面s2=[(r,y,z)R32+y?+22=1)的切面解球面可程成参数曲面=sincos,y=sinsinp,z=coso0,02,其法称量为n=(coscos,cossinsin)(sinsin,sincos)=sin()故在(co,30,20)处切平面方程为(r - ro) : ro + (y - yo) - yo + (z- zo) . zo = 0.83映射的微分我们回忆一下,对于一元函数而言,可微是关该函数可等和线性函数一阶逼近对于多元函数,我们也可等通过线性逼近来定义可微性6
GJ( Σ 0 u (u0,v0) = (x 0 u (u0,v0),y0 u (u0,v0),z0 u (u0,v0) Σ 0 v (u0,v0) = (x 0 v (u0,v0),y0 v (u0,v0),z0 v (u0,v0)) Za Σ 0 u (u0,v0), Σ 0 v (u0,v0) ![, N ~n = Σ0 u (u0,v0) × Σ 0 v (u0,v0) = (y 0 u · z 0 v − z 0 u · y 0 v , z0 u · x 0 v − x 0 u · z 0 v , x0 u · y 0 v − y 0 u · x 0 v ) 6= 0 ~n A(, %? Σ 1JF8D (P − Σ(u0,v0)) · ~n = 0 qM x − x(u0,v0) y − y(u0,v0) z − z(u0,v0) x 0 u (u0,v0) y 0 u (u0,v0) z 0 u (u0,v0) x 0 v (u0,v0) z 0 v (u0,v0) z 0 v (u0,v0) = 0. 3 NM8 S 2 = {(x,y,z) ∈ R 3 | x 2 + y 2 + z 2 = 1} 1J8. M8pP8 x = sin θ cos ϕ, y = sin θ sin ϕ, z = cos θ, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, GA( ~n = (cos θ cos ϕ, cos θ sin ϕ, − sin θ) × (− sin θ sin ϕ,sin θ cos ϕ, 0) = sin θ · (x,y,z) YM (x0,y0,z0) "JF8D (x − x0) · x0 + (y − y0) · y0 + (z − z0) · z0 = 0. §3 4w& Æ7p5/, <B/Gdp?*, j[Ldp2!dp/ . <B>Gdp, Æ7.2b! 76!. 6
设DCRn为开集我们把映射f:D→Rn称为由元向量值函数,写小元量形式为f(1,*..,an)=(fi(a1,.,Tn),..,fm(r1,..,an))为方便起见,以下把欧氏空间中的向量以列向量来表示定的1(微分)设f如上,zo=(ri,,ro)TeD.如果存在m×n阶的矩阵A=(ai)mxn,使得对于o附近的点a,有If()-[f() +A-(-)]ll=o(l-l), →o则称f在°处可微线性映射df(a0): Rn-→RmUHA·V称为于在°处的微元命处1(可微→可导)如果f:D→Rm在z°处可微,则其元量fi(1≤i≤n)在a°处存在方向导数,并且fi(a0)A=ori证明续微元的定义可以看出,如果f在ao处可微,则f在o处连续下面以m=1为例说明方向导数的存在性为此,取单位向量u,由定义,我们有f(o+tu)-f(r)=A(ro+tu-ro)+o(lro+tu-2o)= t.Au+o(lIt)f(a)=A·u,即方向导数存在特下地,这说明uf(r0)=Aei(af. (a),..afA=→OriOrOrr例1设r?y(r,y)(0,0),2 +y2f(a,y) :0,(r, y) = (0, 0).7
a D ⊂ R n t, Æ7<` f : D → R n >G(Zdp, G (g f(x1, · · · ,xn) = (f1(x1, · · · ,xn), · · · ,fm(x1, · · · ,xn)) D H~, 2Ck|b1(2*(h. z1 1 (&) a f Z], x 0 = (x 0 1 , · · · ,x0 n ) T ∈ D. Za&M m × n 1 S A = (aij )m×n, e0<B x 0 K 15 x, ? kf(x) − [f(x 0 ) + A · (x − x 0 )]k = o(kx − x 0 k), x → x0, N f M x 0 ", !<` df(x 0 ) : R n → R m v 7→ A · v f M x 0 "1G. " 1 (& ⇒ u) Za f : D → R m M x 0 ", NGG( fi (1 ≤ i ≤ n) M x 0 "&MD-p, K A = ∂fi ∂xj (x 0 ) m×n . 8 %G1762 , Za f M x 0 ", N f M x 0 "%%. 82 m = 1 #q9D-p1&M!. #, Q*( u, >76, Æ7? f(x 0 + tu) − f(x 0 ) = A(x 0 + tu − x 0 ) + o(kx 0 + tu − x 0k) = t · Au + o(|t|) Rq9 ∂f ∂u(x 0 ) = A · u, vD-p&M. {3, ∂f ∂xi (x 0 ) = A · ei ⇒ A = ∂f ∂x1 (x 0 ), · · · , ∂f ∂xn (x 0 ) . 1 a f(x,y) = x 2y x2 + y 2 , (x,y) 6= (0, 0), 0, (x,y) = (0, 0). 7
们为f(,)≤,故球(0,0)处推连,且(0,0)=(0,0)=0.如果u=(u1u2)为言位向量,求t3uiu2uiu2 (0,0) =mf(tui,tu2)limQuX0=0 (u2+u)t3i+u然而f球(0,0)处不切微(why?)如果fi(1≤i≤m)的偏导回参存球,求记Jf=(),称为f的1Jacobian.Jf球每一忆的如构成一个映射Jf:D→Rm-n,这里经定把m×n阶例阵视为Rmn中的忆定理1(无微的充分条件)如果Jf球D中存球且它作为映射球z°处推连,求于球处切微证明故以m=1为例来证明由条件,f球zo处推连,i=1,2,.…,n根论微元中如定理,有[f(ri,...,a-,,+1,*,n) -f(l,...,al,r+,,an)]f(r)-f(ro) =i=1Nfr,(rl,,rg-1,r+o.(i-a),ai+1,...,an)(a-r)i=15nEf(0) ( -29) +Ea (ai -2l)i=1i=1其中ai= f",(ri,.,a-1,a+0(ai-),a1,...,an)-fa,(rl,...,an)→0, (i→a)从而f(a) -f(a0)+E(20) (ai-29)0?-1o(/-)即球处切微如果经定把m×n的例阵视为Rmn中的忆,求例阵令切定义是然的范回即,如果A=(aii)mxn,求其范回定义为I/All = 1<<8
7 |f(x,y)| ≤ 1 2 |x|, Y f M (0, 0) "%%, K f 0 x (0, 0) = f 0 y (0, 0) = 0. Za u = (u1,u2) *(, N ∂f ∂u(0, 0) = lim t→0 f(tu1,tu2) t = lim t→0 t 3u 2 1u2 (u 2 1 + u 2 2 )t 3 = u 2 1u2 u 2 1 + u 2 2 . V? f M (0,0) " (why?). Za fi (1 ≤ i ≤ m) 1E-p&M, Nx Jf = ∂fi ∂xj m×n , f 1 Jacobian. Jf M6/51ZW/Q<` Jf : D → R m·n , R!Æ7 m × n Sl R m·n b15. z 1 (&wr#) Za Jf M D b&M, Kyn <`M x 0 " %%, N f M x 0 ". 8 Y2 m = 1 #V9. >~, f 0 xi M x 0 "%%, i = 1, 2, · · · ,n. TGbZ7 , ? f(x) − f(x 0 ) = Xn i=1 f(x 0 1 , · · · ,x0 i−1 ,xi ,xi+1, · · · ,xn) − f(x 0 1 , · · · ,x0 i ,xi+1, · · · ,xn) = Xn i=1 f 0 xi (x 0 1 , · · · ,x0 i−1 ,x0 i + θ · (xi − x 0 i ),xi+1, · · · ,xn) · (xi − x 0 i ) = Xn i=1 f 0 xi (x 0 ) · (xi − x 0 i ) +Xn i=1 αi · (xi − x 0 i ) Gb αi = f 0 xi (x 0 1 , · · · ,x0 i−1 ,x0 i +θ(xi−x 0 i ),xi+1, · · · ,xn)−f 0 xi (x 0 1 , · · · ,x0 n ) → 0, (xi → x 0 i ) %? f(x) − " f(x 0 ) +Xn i=1 f 0 xi (x 0 ) · (xi − x 0 i ) # ≤ Xn i=1 α 2 i !1 2 · kxi − x 0 i k = o(kx − x 0 k) v f M x 0 ". ZaÆ7 m × n 1Sl R mn b15, NS.76jV1Cp. v, Za A = (aij )m×n, NGCp76 kAk = X 1≤i≤m 1≤j≤n a 2 ij 1 2 . 8
由Schwarz不等式,有VuER".IIA - ~ll ≤ IIAl - IIol, 定理2(复合空导)设△为R过开集,D为Rm过开集g:△→D及f:D→Rn为对射.如果g在u°E△处可微,f在r°=g(u)处可微。则复合对射h=fog:△→Rn在uo处可微,且Jh(uo)= Jf(r)·Jg(uo)面明因为9在uo处可微,故(1)g(u) - g(u) = Jg(uo) (u -wo) + Rg(u, uo)元过R(u,o)=o(u-ul):、理,因为f在o=g(uo)处可微故(2) f() -f(r0) = Jf(0) ( -20)+ R(,20)元过R()=(l-)由 (1)知, 当 u→ uo)时, g(u)→ g(u)= r0. 以= g(u) 代入(2),得f og(u) -f og(u) = Jf(ro)(g(u) -g(u))+Rf(g(u),g(uo))(3)= Jf(r)Jg(u).(u-uo)+Rfog(u,uo)元过Rfog(u,uo)=Jf(ro)·Rg(u,u)+Rf(g(u),g(u)从而有如别估计IRfog(u,uo)ll≤IJf(r)Rg(u,u)l + /Ry(g(u),g(uo)≤ /Jf(r)l IRg(u, u)I+o(llg(u)-g(u))= o(lu-ul) + o(O(llu-ul)= o(u-ul)从而由(3)及微分的定义知fog在uo处可微且J(og)(u)=Jf(ro)·Jg(u)如果把f,9分例表示成分量形式yi=fi(ri,*,an),i=l,**,m,Tj = gi(u1,,u),j=l,.,n9
> Schwarz 2g, ? kA · vk ≤ kAk · kvk, ∀v ∈ R n . z 2(u) a ∆ R l bt, D R m bt, g : ∆ → D u f : D → R n <`. Za g M u 0 ∈ ∆ ", f M x 0 = g(u 0 ) ", NIi <` h = f ◦ g : ∆ → R n M u 0 ", K Jh(u 0 ) = Jf(x 0 ) · Jg(u 0 ). 8 7 g M u 0 ", Y g(u) − g(u 0 ) = Jg(u 0 ) · (u − u 0 ) + Rg(u,u0 ) (1) Gb Rg(u,u0 ) = o(ku − u 0k). , 7 f M x 0 = g(u 0 ) ", Y f(x) − f(x 0 ) = Jf(x 0 ) · (x − x 0 ) + Rf (x,x0 ) (2) Gb Rf (x,x0 ) = 0(kx − x 0k). > (1) W, , u → u 0 ) c, g(u) → g(u 0 ) = x 0 . 2 x = g(u) )[ (2), 0 f ◦ g(u) − f ◦ g(u 0 ) = Jf(x 0 )(g(u) − g(u 0 )) + Rf (g(u),g(u 0 )) = Jf(x 0 ) · Jg(u 0 ) · (u − u 0 ) + Rf◦g(u,u0 ) (3) Gb Rf◦g(u,u0 ) = Jf(x 0 ) · Rg(u,u0 ) + Rf (g(u),g(u 0 )) %??ZXw kRf◦g(u,u0 )k ≤ kJf(x 0 ) · Rg(u,u0 )k + kRf (g(u),g(u 0 )k ≤ kJf(x 0 )k · kRg(u,u0 )k + o(kg(u) − g(u 0 )k) = o(ku − u 0 k) + o(O(ku − u 0 k)) = o(ku − u 0 k). %?> (3) uG176W f ◦ g M u 0 ", K J(◦g)(u 0 ) = Jf(x 0 ) · Jg(u 0 ). Za f, g GhG(g yi = fi(x1, · · · ,xn), i = 1, · · · ,m, xj = gj (u1, · · · ,ul), j = 1, · · · ,n. 9
则J(fog)(uo)=Jf(r0)Ja(uo)可改写为an(a0)dy1yn(u0)1(r0)or1drr0(uo)aundutdriarmduiJu0yn(u0)Qyn(uo)0yn(r0)ayn(0rm(u0)arm(u0(0OrmdnduidrtduinxlX即oyi(u)u(g(a)ars(u)N-ujOuj=oxs这也就是所谓的链规则下2设f(,y)可微,()可微求u=f(,p()关于的导数解由链规则=f'(c,p(r)):t+f(c,p(r))-p(r)=fi(,(r))+f(,(r)) -p'(r).下3设u=f(c,y)可微,r=rcoso,y=rsino,证明(au)(8u)+1(ou)Ou=Xorarau.2证不由链规则,duauauouarouQy=cos o +- sind+ararararardydyduduardududuaysin o +cOs00ar00ardyay这说明duauauOuOucOsesingsing.arar00dyrdyz下 4 设z= f(u,u,w),u=p(u,s), s=(u,w),求auw10
N J(f ◦ g)(u 0 ) = Jf(x 0 ) · Jg(u 0 ) M ∂y1 ∂u1 (u 0 ) · · · ∂y1 ∂ul (u 0 ) · · · ∂yn ∂u1 (u 0 ) · · · ∂yn ∂ul (u 0 ) n×l = ∂y1 ∂x1 (x 0 ) · · · ∂y1 ∂xm (x 0 ) · · · ∂yn ∂x1 (x 0 ) · · · ∂yn ∂xm (x 0 ) n×m · ∂x1 ∂u1 (u 0 ) · · · ∂x1 ∂ul (u 0 ) · · · ∂xm ∂u1 (u 0 ) · · · ∂xm ∂ul (u 0 ) m×l v ∂yi ∂uj (u 0 ) = Xn s=1 ∂yi ∂xs (g(u 0 )) · ∂xs ∂uj (u 0 ). R.jx1&_N. 2 a f(x,y) , ϕ(x) , N u = f(x,ϕ(x)) [B x 1-p. >&_N u 0 x = f 0 x (x,ϕ(x)) · x 0 x + f 0 y (x,ϕ(x)) · ϕ 0 (x) = f 0 x (x,ϕ(x)) + f 0 y (x,ϕ(x)) · ϕ 0 (x). 3 a u = f(x,y) , x = r cos θ,y = r sin θ, V9 ∂u ∂x2 + ∂u ∂y 2 = ∂u ∂r 2 + 1 r 2 ∂u ∂θ 2 . 8 >&_N, ∂u ∂r = ∂u ∂x · ∂x ∂r + ∂u ∂y · ∂y ∂r = ∂u ∂x cos θ + ∂u ∂y · sin θ ∂u ∂θ = ∂u ∂x · ∂x ∂θ + ∂u ∂y · ∂y ∂θ = −r · ∂u ∂x · sin θ + r ∂u ∂y cos θ Rq9 ∂u ∂r 2 + 1 r 2 ∂u ∂θ 2 = ∂u ∂x cos θ + ∂u ∂y sin θ 2 + − ∂u ∂x sin θ + ∂u ∂y cos θ 2 = ∂u ∂x2 + ∂u ∂y 2 . 4 a z = f(u,v,w),v = ϕ(u,s), s = ψ(u,w), N ∂z ∂u, ∂z ∂w. 10