f(x)例3.设f(x)在x=2处连续,且lim3x-→2 x - 2求 f(2).f(x)解: f(2) = lim f(x) =lim[(x-2)=0x>2(x-2)x-→2f(x)- f(2)f'(2) = limx-2x-→2f(x)= lim3x-→>2 x- 2O10000x机动目录上页下页返回结束
例3.设 f (x) 在 x = 2 处连续,且 3, 2 ( ) lim 2 = → x − f x x 求 f (2). 解: f (2) = lim ( ) 2 f x x→ ] ( 2) ( ) lim[( 2) 2 − = − → x f x x x = 0 2 ( ) (2) (2) lim 2 − − = → x f x f f x 2 ( ) lim 2 − = → x f x x = 3 机动 目录 上页 下页 返回 结束
2en(x-1)) +ax+b4xe例4.设 f(x)=limen(x-1) +1n-00试确定常数α,b使f(x)处处可导,并求f'(x)ax+b,x<1解: f(x)= ^ 2(a+b+1),x=1x?,x>1x<1时, f'(x)=a;x>1时,f'(x)=2x利用f(x)在x=1处可导,得α+b=l=(a+b+l)f(1-)= f(1+)= f(1)即α= 2f'(1)= f*(1)O0000x机动自录上页下页返回结束
例4.设 试确定常数 a , b 使 f (x) 处处可导,并求 解: f (x) = ax + b , x 1 ( 1), x =1 2 1 a+ b + , x 1 2 x x 1时, f (x) = a; x 1时,f (x) = 2x. f (1 ) = f (1 ) = f (1) − + (1) (1) − + f = f 利用 f (x)在 x =1处可导, 得 即 a +b =1 ( 1) 2 1 = a + b + a = 2 机动 目录 上页 下页 返回 结束