《模式识别》课程教学资源(书籍文献)Data Clustering - 50 Years Beyond K-means
文件格式: PDF大小: 2.71MB页数: 39
《模式识别》课程教学资源(书籍文献)Data Clustering - A Review(A.K. JAIN、M.N. MURTY、P.J. FLYNN)
文件格式: PDF大小: 621.33KB页数: 60
《模式识别》课程教学资源(书籍文献)A tutorial on Principal Components Analysis(Lindsay I Smith)
文件格式: PDF大小: 115.6KB页数: 27
《模式识别》课程教学资源(书籍文献)A Tutorial on Principal Component Analysis(Jonathon Shlens)
文件格式: PDF大小: 323.65KB页数: 12
《模式识别》课程教学资源(书籍文献)Sequential Minimal Optimization - A Fast Algorithm for Training Support Vector Machines(John C. Platt)
文件格式: PDF大小: 86.95KB页数: 21
《模式识别》课程教学资源(书籍文献)A Tutorial on Support Vector Machines for Pattern Recognition(CHRISTOPHER J.C. BURGES)
文件格式: PDF大小: 292.3KB页数: 47
《模式识别》课程教学资源(书籍文献)Introduction to Support Vector Learning
文件格式: PDF大小: 394.22KB页数: 41
《模式识别》课程教学资源(书籍文献)TRENDS & CONTROVERSIES TRENDS & CONTROVERSIES - Support vector machines
文件格式: PDF大小: 941.27KB页数: 11
《模式识别》课程教学资源(书籍文献)Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance
文件格式: PDF大小: 330.62KB页数: 13
In this paper, I provide a tutorial exposition on maximum likelihood estimation (MLE). The intended audience of this tutorial are researchers who practice mathematical modeling of cognition but are unfamiliar with the estimation method. Unlike least-squares estimation which is primarily a descriptive tool, MLE is a preferred method of parameter estimation in statistics and is an indispensable tool for many statistical modeling techniques, in particular in non-linear modeling with non-normal data. The purpose of this paper is to provide a good conceptual explanation of the method with illustrative examples so the reader can have a grasp of some of the basic principles
文件格式: PDF大小: 329.12KB页数: 11
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权