应用一元函数的定积分可解决求平面图形的面积、求曲线的弧长、 求某些特殊的几何体的体积、求旋转曲面的面积等等类型的问题
文件格式: PDF大小: 883.89KB页数: 60
从实例看微分与积分的联系 到目前为止,我们已详细介绍了微分与积分(这里专指定积分) 的基本概念,但还不曾涉及微分与积分之间的任何联系。事实上,揭 示微分与积分之间的内在联系是需要许多预备知识的。现在这些预备 知识已经基本具备,可以为这两个重要的概念建立桥梁了
文件格式: PDF大小: 305.46KB页数: 46
性质1(线性性)设f(x)和8(x)都在[a,b上可积,k1和k2是常数 小函数kf(x)+k2g(x)在a,b上也可积,且有 ∫k/(x)+k8(x)x=k(x)dx+Jg(x)x 证对anb的任意一个划分 q=x0
文件格式: PDF大小: 188.57KB页数: 22
定积分概念的导出背景 1609年至1619年间,德国天文学家Kepler提出了著名的“行星运 动三大定律”: ⑴行星在椭圆轨道上绕太阳运 动,太阳在此椭圆的一个焦点上
文件格式: PDF大小: 513.63KB页数: 29
有理函数的不定积分 形如2n(x的函数称为有理函数,这里p(x)和④(x)分别是m次和 q,(x) n次多项式。在本节中,我们将通过介绍求一般有理函数的不定积分 的方法,证明这样的一个结论:有理函数的原函数一定是初等函数。 求有理函数的不定积分是我们在实际应用中经常遇到的问题。此 外,对于求某些其他类型函数的不定积分,如无理函数、三角函数的 不定积分问题,也可以通过适当的变换化成求有理函数的不定积分问 题而得到解决
文件格式: PDF大小: 198.13KB页数: 29
换元积分法 换元积分法可以分成两种类型: ⑴ 第一类换元积分法 在不定积分 f ( ) x x ∫ d 中,若 f x( )可以通过等价变形化成
文件格式: PDF大小: 334.08KB页数: 40
微分的逆运算 ── 不定积分 定义6.1.1 若在某个区间上,函数F x( ) 和 f x( )成立关系
文件格式: PDF大小: 120.31KB页数: 13
解析方法和数值方法 求方程 f x( ) = 0 的解(或根),就是要寻找一个数 x*,使得满足 0)( * xf = 。 求方程的解主要方法有两种:解析方法和数值方法
文件格式: PDF大小: 240.67KB页数: 16
本节介绍函数微分的一些应用,包括极值和最值问题、函数作 图以及在数学建模中的应用。 极值问题 f x( )的全部极值点必定都在使得 f x ′() 0 = 和使得 f x ′( )不存在的 点集之中
文件格式: PDF大小: 502.55KB页数: 38
函数在x=0处的 Taylor公式 函数f(x)在x=0处的 Taylor公式
文件格式: PDF大小: 388.2KB页数: 37
©2025 mall.hezhiquan.com 和泉文库
帮助反馈侵权