无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设 D上的函数 f xy (,) 具有下述性质:它在 D中有界的、可 求 面积的子区域上可积
文件格式: PDF大小: 321.1KB页数: 29
曲线坐标 设U 为uv平面上的开集,V 是xy平面上开集,映射 T: ( , ), ( , ) x = x uv y yuv = 是U 到V 的一个一一对应,它的逆变换记为T u uxy v vxy − = = 1: ( , ), ( , )。 在U 中取直线u u = 0,就相应得到xy平面上的一条曲线 x xu v y yu v = ( , ), ( , ) 0 0 = , 称之为v -曲线;同样,取直线v v = 0 ,就相应得到xy平面上的u -曲线, x xuv y yuv = ( , ), ( , ) 0 0 =
文件格式: PDF大小: 376.41KB页数: 41
重积分的性质 性质 1(线性性)设 f 和 g 都在区域 Ω 上可积,α, β 为常数,则 α + βgf 在 Ω 上也可积,并且 ( )d α β f + g V ∫ Ω
文件格式: PDF大小: 302.45KB页数: 31
在一元定积分中已经学过计算曲边梯形等平面图形的面积,但是 并不能将其简单照搬到一般的平面点集上,因为一般平面点集是否有 面积还是一个问题。为此,先引入面积的定义
文件格式: PDF大小: 314.31KB页数: 29
Lagrange 乘数法 在考虑函数的极值或最值问题时,经常需要对函数的自变量附加 一定的条件。例如,求原点到直线 ⎩⎨⎧ =++ =++ 632 ,1zyx zyx 的距离,就是在限制条件 + + zyx = 1和 + + zyx = 632 的情况下,计算函 数 222 ),,( ++= zyxzyxf 的最小值
文件格式: PDF大小: 252.21KB页数: 35
无条件极值 定义 12.6.1 设 D n ∈R 为开区域, f x)( 为定义在 D 上的函数, 0 x ),,,( 002 01 n = \ xxx ∈D。若存在 0 x 的邻域 ),( 0 x rO ,使得 )),()(()()( 0 0 ≥ 或 ≤ ffff xxxx x ∈ ),( 0 x rO , 则称 0 x 为 f 的极大值点(或极小值点);相应地,称 )( 0 f x 为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文件格式: PDF大小: 322.17KB页数: 29
空间曲线的切线和法平面 一条空间曲线可以看成一个质点在空间运动的轨迹。取定一个直 角坐标系,设质点在时刻 t位于点 tztytxP ))(),(),(( 处,即它在任一时刻 的坐标可用
文件格式: PDF大小: 223.11KB页数: 31
前面讨论的函数大多是 = yxfz ),( 形式,如 z = xy 和 22 += yxz 等。 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler 方程 yxF ),( = − − ε yxy = < ε < 10,0sin , 这里 x 是时间, y 是行星与太阳的连线扫过的扇形的弧度,ε 是行星 运动的椭圆轨道的离心率
文件格式: PDF大小: 240.78KB页数: 44
中值定理 定义 12.3.1 设 n D ⊂ R 是区域。若连结 D中任意两点的线段都完 全属于D,即对于任意两点 x0, 1 x ∈ D和一切λ ∈ ]1,0[ ,恒有 )( 0 + λ − xxx 01 ∈ D, 则称D为凸区域
文件格式: PDF大小: 143.03KB页数: 13
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
文件格式: PDF大小: 166.97KB页数: 24